Generalized Korteweg-de Vries equation

From DispersiveWiki
Revision as of 19:38, 28 July 2006 by Pblue (talk | contribs) ((Some) cleaning of bibliographic references)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Half-line theory

The gKdV Cauchy-boundary problem on the half-line is

u_t + u_{xxx} + u_x + u^k u_x = 0; u(x,0) = u_0(x); u(0,t) = h(t)

The sign of u_{xxx} is important (it makes the influence of the boundary x=0 mostly negligible), the sign of u u_x is not. The drift term u_x is convenient for technical reasons; it is not known whether it is truly necessary.

  • LWP is known for initial data in H^s and boundary data in H^{(s+1)/3} when s > 3/4 [CoKn-p].
    • The techniques are based on KnPoVe1993 and a replacement of the IVBP with a forced IVP.
    • This has been improved to s >= s_c = 1/2 - 2/k when k > 4 [CoKe-p].
    • More specific results are known for KdV, mKdV, gKdV-3, and gKdV-4.

Miscellaneous gKdV results

[Thanks to Nikolaos Tzirakis for some corrections - Ed.]

  • On R with k > 4, gKdV-k is LWP down to scaling: s >= s_c = 1/2 - 2/k KnPoVe1993
    • Was shown for s>3/2 in GiTs1989
    • One has ill-posedness in the supercritical regime BirKnPoSvVe1996
    • For small data one has scattering KnPoVe1993c.Note that one cannot have scattering in L^2 except in the critical case k=4 because one can scale solitons to be arbitrarily small in the non-critical cases.
    • Solitons are H^1-unstable BnSouSr1987
    • If one considers an arbitrary smooth non-linearity (not necessarily a power) then one has LWP for small data in H^s, s > 1/2 St1995
  • On R with any k, gKdV-k is GWP in H^s for s >= 1 KnPoVe1993, though for k >= 4 one needs the L^2 norm to be small; global weak solutions were constructed much earlier, with the same smallness assumption when k >= 4. This should be improvable below H^1 for all k.
  • On R with any k, gKdV-k has the H^s norm growing like t^{(s-1)+} in time for any integer s >= 1 St1997b
  • On R with any non-linearity, a non-zero solution to gKdV cannot be supported on the half-line R^+ (or R^-) for two different times references:KnPoVe-p3 KnPoVe-p3, [KnPoVe-p4].
    • In the completely integrable cases k=1,2 this is in Zg1992
    • Also, a non-zero solution to gKdV cannot vanish on a rectangle in spacetime SauSc1987; see also Bo1997b.
    • Extensions to higher order gKdV type equations are in Bo1997b, [KnPoVe-p5].
  • On R with non-integer k, one has decay of O(t^{-1/3}) in L^\infty for small decaying data if k > (19 - sqrt(57))/4 ~ 2.8625... CtWs1991
    • A similar result for k > (5+sqrt(73))/4 ~ 3.39... was obtained in PoVe1990.
    • When k=2 solutions decay like O(t^{-1/3}), and when k=1 solutions decay generically like O(t^{-2/3}) but like O( (t/log t)^{-2/3}) for exceptional data AbSe1977
  • In the L^2 subcritical case 0 < k < 4, multisoliton solutions are asymptotically H^1-stable [MtMeTsa-p]
  • A dissipative version of gKdV-k was analyzed in MlRi2001