KP-II equation

From DispersiveWiki
Revision as of 01:22, 17 March 2007 by M. Otani (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The KP-II equation is the special case of the Kadomtsev-Petviashvili equation when the parameter is positive.

  • Scaling is s1 + 2s2 + 1/2 = 0.
  • GWP for s1 > -1/14, s2 = 0 IsMj2003.
    • For s1 > -1/64 this is also in IsMj2001.
  • GWP for s1 > -1/78, s2 = 0 Tk2000 assuming a moment condition.
    • A similar result, with a slightly stricter constraint on s1 but no moment condition, was obtained in Tz2000.
    • For s1 = s2 ³ 0 this was proven in Bo1993c, and this argument also applies to the periodic setting. Heuristically this result is indicated by the local smoothing estimates in Sau1993.

LWP for s1 > -1/3, s2 = 0 TkTz2001, IsMj2001

    • For s1 > -1/4, s2 = 0 this was shown in Tk2000b
    • For s1 > -e, s2 = 0 and small data this was shown in Tz1999.
    • For s1 = s2 ³ 0 this was proven in Bo1993c, and this argument also applies to the periodic setting.
    • For s1, s2 ³ 3 this is in Uk1989
    • Related results are in IoNu1998, IsMjStb2001.
  • Weak solutions in a weighted L2 space were constructed in Fa1990.
  • For s1 < -1/3 the natural bilinear estimate fails TkTz2001.
  • Remark: Unlike KP-I, KP-II does not admit soliton solutions.

The KP-II equation can be generalized to three dimensions (replace partial_yy with partial_yy + partial_zz), with s_1 regularity in the x direction and s_2 in the y,z directions. Scaling is now s_1 + 2s_2 – ½ = 0. In isotropic spaces, local well-posedness in H^s with s > 3/2 was established assuming the low frequency condition that partial_x^{-1} u is also in H^s Tz1999. Anisotropically, local well-posedness in the space s_1 > 1, s_2 > 0 was established in IsLopMj-p.