KdV-type equations: Difference between revisions

From DispersiveWiki
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<title>Equations of KdV type</title>
<div class="Section1">
<!--[if gte mso 9]><xml>
<o:DocumentProperties>
  <o:Author>Colliand</o:Author>
  <o:LastAuthor> Terence Tao</o:LastAuthor>
  <o:Revision>27</o:Revision>
  <o:TotalTime>83</o:TotalTime>
  <o:Created>2003-07-07T22:34:00Z</o:Created>
  <o:LastSaved>2005-03-29T17:54:00Z</o:LastSaved>
  <o:Pages>1</o:Pages>
  <o:Words>6374</o:Words>
  <o:Characters>36333</o:Characters>
  <o:Company>DellComputerCorporation</o:Company>
  <o:Lines>302</o:Lines>
  <o:Paragraphs>85</o:Paragraphs>
  <o:CharactersWithSpaces>42622</o:CharactersWithSpaces>
  <o:Version>11.6360</o:Version>
</o:DocumentProperties>
</xml><![endif]--><!--[if gte mso 9]><xml>
<w:WordDocument>
  <w:SpellingState>Clean</w:SpellingState>
  <w:GrammarState>Clean</w:GrammarState>
  <w:ValidateAgainstSchemas/>
  <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid>
  <w:IgnoreMixedContent>false</w:IgnoreMixedContent>
  <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText>
  <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel>
</w:WordDocument>
</xml><![endif]--><!--[if gte mso 9]><xml>
<w:LatentStyles DefLockedState="false" LatentStyleCount="156">
</w:LatentStyles>
</xml><![endif]-->
<style>
<!--
/* Font Definitions */
@font-face
{font-family:Wingdings;
panose-1:5 0 0 0 0 0 0 0 0 0;
mso-font-charset:2;
mso-generic-font-family:auto;
mso-font-pitch:variable;
mso-font-signature:0 268435456 0 0 -2147483648 0;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{mso-style-parent:"";
margin:0in;
margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:12.0pt;
font-family:"Times New Roman";
mso-fareast-font-family:"Times New Roman";}
h2
{mso-margin-top-alt:auto;
margin-right:0in;
mso-margin-bottom-alt:auto;
margin-left:0in;
mso-pagination:widow-orphan;
mso-outline-level:2;
font-size:18.0pt;
font-family:"Times New Roman";
font-weight:bold;}
h4
{mso-margin-top-alt:auto;
margin-right:0in;
mso-margin-bottom-alt:auto;
margin-left:0in;
mso-pagination:widow-orphan;
mso-outline-level:4;
font-size:12.0pt;
font-family:"Times New Roman";
font-weight:bold;}
p.MsoListBullet, li.MsoListBullet, div.MsoListBullet
{mso-style-update:auto;
margin-top:0in;
margin-right:0in;
margin-bottom:0in;
margin-left:.25in;
margin-bottom:.0001pt;
text-indent:-.25in;
mso-pagination:widow-orphan;
mso-list:l0 level1 lfo1;
tab-stops:list .25in;
font-size:12.0pt;
font-family:"Times New Roman";
mso-fareast-font-family:"Times New Roman";}
a:link, span.MsoHyperlink
{color:blue;
text-decoration:underline;
text-underline:single;}
a:visited, span.MsoHyperlinkFollowed
{color:blue;
text-decoration:underline;
text-underline:single;}
p
{mso-margin-top-alt:auto;
margin-right:0in;
mso-margin-bottom-alt:auto;
margin-left:0in;
mso-pagination:widow-orphan;
font-size:12.0pt;
font-family:"Times New Roman";
mso-fareast-font-family:"Times New Roman";}
tt
{font-family:"Courier New";
mso-ascii-font-family:"Courier New";
mso-fareast-font-family:"Courier New";
mso-hansi-font-family:"Courier New";
mso-bidi-font-family:"Courier New";}
span.SpellE
{mso-style-name:"";
mso-spl-e:yes;}
span.GramE
{mso-style-name:"";
mso-gram-e:yes;}
@page Section1
{size:8.5in 11.0in;
margin:1.0in 1.25in 1.0in 1.25in;
mso-header-margin:.5in;
mso-footer-margin:.5in;
mso-paper-source:0;}
div.Section1
{page:Section1;}
/* List Definitions */
@list l0
{mso-list-id:-119;
mso-list-type:simple;
mso-list-template-ids:784384884;}
@list l0:level1
{mso-level-number-format:bullet;
mso-level-style-link:"List Bullet";
mso-level-text:\F0B7;
mso-level-tab-stop:.25in;
mso-level-number-position:left;
margin-left:.25in;
text-indent:-.25in;
font-family:Symbol;}
@list l1
{mso-list-id:59014410;
mso-list-type:hybrid;
mso-list-template-ids:-1913513086 -1798118724 -1017598816 158136650 328497748 1318231072 578045624 1554427568 1172461926 796961796;}
@list l1:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l1:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l1:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l1:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l1:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l1:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l1:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l1:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l2
{mso-list-id:165942155;
mso-list-type:hybrid;
mso-list-template-ids:-709860618 132922098 -1422468994 -543815896 82508068 -1975896474 1050966940 -1665233966 1549955700 860408658;}
@list l2:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l2:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l2:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l2:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l2:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l2:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l2:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l2:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l2:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l3
{mso-list-id:168182478;
mso-list-type:hybrid;
mso-list-template-ids:674401850 -313775740 100693664 1936340490 -1709787946 767827364 1542718378 -381629046 -1308451268 -378998900;}
@list l3:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l3:level2
{mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l3:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l3:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l3:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l3:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l3:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l3:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l3:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l4
{mso-list-id:320232622;
mso-list-type:hybrid;
mso-list-template-ids:-1618192938 1330412288 1444038448 2119963898 765113922 2067070236 -1160072790 1375271296 1605777140 -1577185564;}
@list l4:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l4:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l4:level3
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l4:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l4:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l4:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l4:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l4:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l4:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l5
{mso-list-id:434135963;
mso-list-type:hybrid;
mso-list-template-ids:-542725910 -1989001232 967091780 -258828858 1955374308 1233670250 1185720282 -519528720 -540356162 633136016;}
@list l5:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l5:level2
{mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l5:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l5:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l5:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l5:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l5:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l5:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l5:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l6
{mso-list-id:512769651;
mso-list-type:hybrid;
mso-list-template-ids:201072230 -1825647680 -203535374 -151514704 -904603146 883164454 18531556 -705383712 -1040568890 -2067863834;}
@list l6:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l6:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l6:level3
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l6:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l6:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l6:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l6:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l6:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l6:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l7
{mso-list-id:622616129;
mso-list-type:hybrid;
mso-list-template-ids:940591768 1067224872 1455844604 -1656194402 1682488634 204524340 683952088 -2102472138 -346767930 -227374296;}
@list l7:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l7:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l7:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l7:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l7:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l7:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l7:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l7:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l7:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l8
{mso-list-id:723725180;
mso-list-type:hybrid;
mso-list-template-ids:-99083428 -220961180 -1921223632 -537343498 -1671161318 -1774003118 -756508450 297817086 -961482748 1254398216;}
@list l8:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l8:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l8:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l8:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l8:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l8:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l8:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l8:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l8:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l9
{mso-list-id:783380878;
mso-list-type:hybrid;
mso-list-template-ids:1195124968 -1176856626 705838168 1430024758 -10969166 -2429068 -886557894 -981976734 -674716836 1739458092;}
@list l9:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l9:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l9:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l9:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l9:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l9:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l9:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l9:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l9:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l10
{mso-list-id:876965743;
mso-list-type:hybrid;
mso-list-template-ids:-2121116484 607317988 -1849143530 1549421520 -185434022 1802422662 -893866580 781089088 141182364 -727819858;}
@list l10:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l10:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l10:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l10:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l10:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l10:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l10:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l10:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l10:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l11
{mso-list-id:893352415;
mso-list-type:hybrid;
mso-list-template-ids:1277608332 -1485438268 -2123969482 -738684274 -806691202 535473678 -1044592642 -387403456 -1996555014 -1668088518;}
@list l11:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l11:level2
{mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l11:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l11:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l11:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l11:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l11:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l11:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l11:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l12
{mso-list-id:897667319;
mso-list-type:hybrid;
mso-list-template-ids:-1623049588 1915678138 -2112877258 878758142 748328180 -1117737218 -780006804 1262361794 -1320548886 1498856602;}
@list l12:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l12:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l12:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l12:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l12:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l12:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l12:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l12:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l12:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l13
{mso-list-id:1055665564;
mso-list-type:hybrid;
mso-list-template-ids:-656760952 -1884229592 -1392877956 962769610 1778543280 1357706460 1408030976 2034147620 1277690490 1036396832;}
@list l13:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l13:level2
{mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l13:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l13:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l13:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l13:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l13:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l13:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l13:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l14
{mso-list-id:1070232000;
mso-list-type:hybrid;
mso-list-template-ids:1145869726 1757715046 -1187204508 435191548 350768320 -617735082 1850607782 1227895152 -443903892 306073588;}
@list l14:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l14:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l14:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l14:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l14:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l14:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l14:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l14:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l14:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l15
{mso-list-id:1144271540;
mso-list-type:hybrid;
mso-list-template-ids:-660064188 -288425564 -1174784214 -1516893902 955296806 -1007663708 -197227728 504643970 -1495471548 -729751772;}
@list l15:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l15:level2
{mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l15:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l15:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l15:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l15:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l15:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l15:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l15:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l16
{mso-list-id:1197427457;
mso-list-type:hybrid;
mso-list-template-ids:1574862944 -1950695562 -1664058574 -744472278 947057276 1142076072 -1971270006 853701290 2058129874 -1871823896;}
@list l16:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l16:level2
{mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l16:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l16:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l16:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l16:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l16:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l16:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l16:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l17
{mso-list-id:1235817101;
mso-list-type:hybrid;
mso-list-template-ids:-484300216 1772663010 2003322996 -605260242 1213481922 -778387562 -1722508324 -633936128 -1336356512 160365994;}
@list l17:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l17:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l17:level3
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l17:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l17:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l17:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l17:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l17:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l17:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l18
{mso-list-id:1351446674;
mso-list-type:hybrid;
mso-list-template-ids:-652204930 975195168 -839748382 -1938498170 -385849910 2144479048 1032863454 538328702 -1315785518 -1973886200;}
@list l18:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l18:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l18:level3
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l18:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l18:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l18:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l18:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l18:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l18:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l19
{mso-list-id:1353916209;
mso-list-type:hybrid;
mso-list-template-ids:-1560374772 1093200440 223497064 1490601500 -612976162 130296844 985066278 -664612648 -2054365446 -663688072;}
@list l19:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l19:level2
{mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l19:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l19:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l19:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l19:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l19:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l19:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l19:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l20
{mso-list-id:1418282890;
mso-list-type:hybrid;
mso-list-template-ids:-1991619790 433720286 2122108218 -515215862 -175098546 1080094448 42740232 -932559314 -1508491926 1711071164;}
@list l20:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l20:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l20:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l20:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l20:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l20:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l20:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l20:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l20:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l21
{mso-list-id:1419864039;
mso-list-type:hybrid;
mso-list-template-ids:-1692898040 1271593640 -1801830626 -494103412 1275769334 -1705615396 302279644 1144168706 1100762864 -1614642336;}
@list l21:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l21:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l21:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l21:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l21:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l21:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l21:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l21:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l21:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l22
{mso-list-id:1442846612;
mso-list-type:hybrid;
mso-list-template-ids:2067847166 -1019993162 -1991994912 -1273466774 129152608 952912330 894091772 1751558862 509648994 2007105630;}
@list l22:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l22:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l22:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l22:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l22:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l22:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l22:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l22:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l22:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l23
{mso-list-id:1471098332;
mso-list-type:hybrid;
mso-list-template-ids:97304936 856864862 1753926598 631136496 1466871724 -664615862 -225280294 -151111078 -529001762 1021367848;}
@list l23:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l23:level2
{mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l23:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l23:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l23:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l23:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l23:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l23:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l23:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l24
{mso-list-id:1682974503;
mso-list-type:hybrid;
mso-list-template-ids:-2116115676 192056146 1409196666 -1008037988 -580595822 -1581115924 1231294170 886992706 -1599548510 -1721435040;}
@list l24:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l24:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l24:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l24:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l24:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l24:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l24:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l24:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l24:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l25
{mso-list-id:1834493652;
mso-list-type:hybrid;
mso-list-template-ids:-1554608450 67698689 67698691 67698693 67698689 67698691 67698693 67698689 67698691 67698693;}
@list l25:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
font-family:Symbol;}
@list l25:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l25:level3
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;
font-family:Wingdings;}
@list l25:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l25:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l25:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l25:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l25:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l25:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l26
{mso-list-id:1854104544;
mso-list-type:hybrid;
mso-list-template-ids:-1712400070 968550572 -933873070 -455555754 -107955424 1014519238 -241927054 -1227193718 -2063544704 -2006410062;}
@list l26:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l26:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l26:level3
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l26:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l26:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l26:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l26:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l26:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l26:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l27
{mso-list-id:1862892628;
mso-list-type:hybrid;
mso-list-template-ids:-774616474 -1979911604 -766758018 -1106713156 491695502 -1783715784 -96075702 2047101606 1225808386 2048267716;}
@list l27:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l27:level2
{mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l27:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l27:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l27:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l27:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l27:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l27:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l27:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l28
{mso-list-id:2035423873;
mso-list-type:hybrid;
mso-list-template-ids:398256986 -1564699040 1896400504 -1665608008 -183731528 -2101464386 484356870 -1796573704 264525576 1269051570;}
@list l28:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l28:level2
{mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l28:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l28:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l28:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l28:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l28:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l28:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l28:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l29
{mso-list-id:2053187200;
mso-list-type:hybrid;
mso-list-template-ids:1351230544 -2108259382 1705914752 1150478414 2053430216 203608194 -1657906354 1061684816 -1903506722 493782982;}
@list l29:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l29:level2
{mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l29:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l29:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l29:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l29:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l29:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l29:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l29:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l30
{mso-list-id:2109349273;
mso-list-type:hybrid;
mso-list-template-ids:1787869372 -1715570850 -1172305440 561384266 1802417854 606088486 1928235552 1416668380 267431242 -1766973628;}
@list l30:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l30:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l30:level3
{mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l30:level4
{mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l30:level5
{mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l30:level6
{mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l30:level7
{mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l30:level8
{mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;}
@list l30:level9
{mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;}
ol
{margin-bottom:0in;}
ul
{margin-bottom:0in;}
-->
</style>
<!--[if gte mso 10]>
<style>
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-parent:"";
mso-padding-alt:0in 5.4pt 0in 5.4pt;
mso-para-margin:0in;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:10.0pt;
font-family:"Times New Roman";
mso-ansi-language:#0400;
mso-fareast-language:#0400;
mso-bidi-language:#0400;}
</style>
<![endif]-->
<meta name=Author content="Terence Tao">


<!--[if gte mso 9]><xml>
==Equations of <span class="SpellE">Korteweg</span> de <span class="SpellE">Vries</span> type==
<o:shapedefaults v:ext="edit" spidmax="2050"/>
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
  <o:idmap v:ext="edit" data="1"/>
</o:shapelayout></xml><![endif]-->
</head>


<body lang=EN-US link=blue vlink=blue style='tab-interval:.5in'>
<div class="MsoNormal" style="text-align: center"><center>
----
</center></div>


<div class=Section1>
<center>'''Overview'''</center>


<h2 align=center style='text-align:center'>Equations of <span class=SpellE>Korteweg</span>
The <span class="SpellE">KdV</span> <span class="GramE">family of equations are</span> of the form
de <span class=SpellE>Vries</span> type</h2>


<div class=MsoNormal align=center style='text-align:center'>
<center><span class="SpellE">u_t</span> + u<span class="GramE">_{</span>xxx} + P(u)_x = 0</center>


<hr size=2 width="100%" align=center>
<span class="GramE">where</span> u(<span class="SpellE">x,t</span>) is a function of one space and one time variable, and P(u) is some polynomial of u. One can place various normalizing constants in front of the u<span class="GramE">_{</span>xxx} and P(u) terms, but they can usually be scaled out. The function u and the polynomial P are usually assumed to be real.


</div>
Historically, these types of equations first arose in the study of 2D shallow wave propagation, but have since appeared as limiting cases of many dispersive models. Interestingly, the 2D shallow wave equation can also give rise to the <span class="SpellE">Boussinesq</span> or [schrodinger.html#Cubic NLS on R 1D NLS-3] equation by making more limiting assumptions (in particular, weak nonlinearity and slowly varying amplitude).
 
<p class=MsoNormal align=center style='text-align:center'><a name=overview></a><b>Overview</b></p>
 
<p>The <span class=SpellE>KdV</span> <span class=GramE>family of equations are</span>
of the form </p>
 
<p align=center style='text-align:center'><span class=SpellE>u_t</span> + u<span
class=GramE>_{</span>xxx} + P(u)_x = 0</p>
 
<p><span class=GramE>where</span> u(<span class=SpellE>x,t</span>) is a
function of one space and one time variable, and P(u) is some polynomial of
u.&nbsp; One can place various normalizing constants in front of the u<span
class=GramE>_{</span>xxx} and P(u) terms, but they can usually be scaled
out.&nbsp; The function u and the polynomial P are usually assumed to be real. </p>
 
<p>Historically, these types of equations first arose in the study of 2D
shallow wave propagation, but have since appeared as limiting cases of many
dispersive models.&nbsp; Interestingly, the 2D shallow wave equation can also
give rise to the <span class=SpellE>Boussinesq</span> or <a
href="schrodinger.html#Cubic NLS on R">1D NLS-3</a> equation by making more
limiting assumptions (in particular, weak nonlinearity and slowly varying
amplitude). </p>
 
<p>The x variable is usually assumed to live on the real line R (so there is
some decay at infinity) or on the <span class=SpellE>torus</span> T (so the
data is periodic).&nbsp; The half-line has also been studied, as has the case
of periodic data with large period.&nbsp; It might be interesting to look at
whether the periodicity assumption can be perturbed (e.g. quasi-periodic data);
it is not clear whether the phenomena we see in the periodic problem are robust
under perturbations, or are number-theoretic <span class=SpellE>artefacts</span>
of perfect periodicity. </p>
 
<p>When <span class=GramE>P(</span>u) = c u^{k+1}, then the equation is
referred to as generalized <span class=SpellE>gKdV</span> of order k, or <span
class=SpellE>gKdV</span>-k.&nbsp; <span class=GramE>gKdV-1</span> is the
original <span class=SpellE>Korteweg</span> de <span class=SpellE>Vries</span>
 
(<span class=SpellE>KdV</span>) equation, gKdV-2 is the modified <span
class=SpellE>KdV</span> (<span class=SpellE>mKdV</span>) equation.&nbsp; <span
class=SpellE>KdV</span> and <span class=SpellE>mKdV</span> are quite special,
being the only equations in this family which are completely <span
class=SpellE>integrable</span>. </p>
 
<p>If k is even, the sign of c is important.&nbsp; The c &lt; 0 case is known
as the <span class=SpellE>defocussing</span> case, while c &gt; 0 is the <span
class=SpellE>focussing</span> case.&nbsp; When k is odd, the constant c can
always be scaled out, so we do not distinguish <span class=SpellE>focussing</span>
 
and <span class=SpellE>defocussing</span> in this case. </p>
 
<p>Drift terms <span class=SpellE>u_x</span> can be added, but they can be
subsumed into the polynomial <span class=GramE>P(</span>u) or eliminated by a <span
class=SpellE>Gallilean</span> transformation [except in the half-line case].&nbsp;
Indeed, one can freely insert or remove any term of the form a'(t) <span
class=SpellE>u_x</span> by shifting the x variable by <span class=GramE>a(</span>t),
which is especially useful for periodic higher-order <span class=SpellE>gKdV</span>
 
equations (setting a'(t) equal to the mean of P(u(t))). </p>
 
<p><span class=SpellE>KdV</span>-type equations on R or T always come with
three conserved quantities: </p>
 
<p align=center style='text-align:center'>Mass:&nbsp; \<span class=SpellE>int</span>
u <span class=SpellE>dx</span> <br>
L^2: \<span class=SpellE>int</span> u^2 <span class=SpellE>dx</span> <br>
 
Hamiltonian: \<span class=SpellE>int</span> u_x^2 - <span class=GramE>V(</span>u)
<span class=SpellE>dx</span></p>
 
<p><span class=GramE>where</span> V is a primitive of P.&nbsp; Note that the
Hamiltonian is positive-definite in the <span class=SpellE>defocussing</span>
cases (if u is real); thus the <span class=SpellE>defocussing</span> equations
have a better chance of long-term existence.&nbsp;&nbsp; The mass has no
definite sign and so is only useful in specific cases (e.g. perturbations of a <span
class=SpellE>soliton</span>). </p>
 
<p>In general, the above three quantities are the only conserved quantities
available, but the <a href="#kdv"><span class=SpellE>KdV</span></a> and <a
href="#mkdv"><span class=SpellE>mKdV</span></a> equations come with infinitely
many more such conserved quantities due to their completely <span class=SpellE>integrable</span>
nature. </p>
 
<p>The critical (or scaling) regularity is </p>
 
<p align=center style='text-align:center'><span class=SpellE>s_c</span> = 1/2 -
2/k.</p>
 
<p>In particular, <a href="#kdv"><span class=SpellE>KdV</span></a>, <a
href="#mkdv"><span class=SpellE>mKdV</span></a>, and gKdV-3 are <span
class=SpellE>subcritical</span> with respect to L^2, gKdV-4 is L^2 critical,
and all the other equations are L^2 supercritical.&nbsp; Generally speaking,
the potential energy term V(u) can be pretty much ignored in the sub-critical
equations, needs to be dealt with carefully in the critical equation, and can
completely dominate the Hamiltonian in the super-critical equations (to the
point that blowup occurs if the equation is not <span class=SpellE>defocussing</span>).&nbsp;
Note that H^1 is always a sub-critical regularity. </p>
 
<p>The dispersion relation \<span class=SpellE>tau</span> = \xi^3 is always
increasing, which means that singularities always propagate to the left.&nbsp;
In fact, high frequencies propagate leftward at extremely high speeds, which
causes a smoothing effect if there is some decay in the initial data (L^2 will
do).&nbsp; On the other hand, <span class=SpellE>KdV</span>-type equations have
the remarkable property of supporting localized <span class=SpellE>travelling</span>
wave solutions known as <span class=SpellE>solitons</span>, which propagate to
the right.&nbsp; It is known that solutions to the completely <span
class=SpellE>integrable</span> equations (i.e. <span class=SpellE>KdV</span>
 
and <span class=SpellE>mKdV</span>) always resolve to a superposition of <span
class=SpellE>solitons</span> as t -&gt; infinity, but it is an interesting open
question as to whether the same phenomenon occurs for the other <span
class=SpellE>KdV</span>-type equations. </p>
 
<p>A <span class=SpellE>KdV</span>-type equation can be viewed as a <span
class=SpellE>symplectic</span> flow with the Hamiltonian defined above, and the
 
<span class=SpellE>symplectic</span> form given by </p>
 
<p align=center style='text-align:center'>{<span class=GramE>u</span>, v} := \<span
class=SpellE>int</span> u <span class=SpellE>v_x</span> <span class=SpellE>dx</span>.</p>
 
<p>Thus H<span class=GramE>^{</span>-1/2} is the natural Hilbert space in which
to study the <span class=SpellE>symplectic</span> geometry of these
flows.&nbsp; Unfortunately, the <span class=SpellE>gKdV</span>-k equations are
only locally well-posed in H<span class=GramE>^{</span>-1/2} when k=1. </p>
 
<div class=MsoNormal align=center style='text-align:center'>
 
<hr size=2 width="100%" align=center>
 
</div>
 
<p class=MsoNormal align=center style='text-align:center'><a name=Airy></a><b>Airy
estimates</b></p>
 
<p>Solutions to the Airy equation and its perturbations are either estimated in
mixed space-time norms <span class=SpellE>L^q_t</span> <span class=SpellE>L^r_x</span>,
<span class=SpellE>L^r_x</span> <span class=SpellE>L^q_t</span>, or in X^{<span
class=SpellE>s<span class=GramE>,b</span></span>} spaces, defined by </p>
 
<p align=center style='text-align:center'><tt><span style='font-size:10.0pt'>||
u ||_{<span class=SpellE>s<span class=GramE>,b</span></span>} = ||
&lt;xi&gt;^s&nbsp; &lt;tau-xi^3&gt;^b \hat{u} ||_2.</span></tt></p>
 
<p>Linear space-time estimates in which the space norm is evaluated first are
known as <a href="#kdv_linear"><span class=SpellE>Strichartz</span> estimates</a>,
but these estimates only play a minor role in the theory.&nbsp; A more
important category of linear estimates are the smoothing estimates and maximal
function estimates.&nbsp;&nbsp;&nbsp; The X^{<span class=SpellE>s<span
class=GramE>,b</span></span>} spaces are used primarily for <a
href="#kdv_bilinear">bilinear estimates</a>, although more recently <a
href="#KdV_multilinear"><span class=SpellE>multilinear</span> estimates have
begun to appear</a>.&nbsp; These spaces and estimates first appear in the
context of the <span class=SpellE>Schrodinger</span> equation in [<a
href="references.html#Bo1993b">Bo1993b</a>], although the analogues spaces for
the wave equation appeared earlier [<a href="references.html#RaRe1982">RaRe1982</a>],
[<a href="references.html#Be1983">Be1983</a>] in the context of <span
class=SpellE>propogation</span> of singularities.&nbsp; See also [<a
href="references.html#Bo1993">Bo1993</a>], [<a href="references.html#KlMa1993">KlMa1993</a>].
 
</p>
 
<div class=MsoNormal align=center style='text-align:center'>
 
<hr size=2 width="100%" align=center>
 
</div>
 
<p class=MsoNormal align=center style='text-align:center'><a name="kdv_linear"></a><b>Linear
Airy estimates</b></p>
 
<ul type=disc>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l4 level1 lfo2;tab-stops:list .5in'>If u is in X^{0,1/2+} on <b>R</b>,
    then</li>
 
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level2 lfo2;tab-stops:list 1.0in'>u is in L^\<span
      class=SpellE>infty_t</span> L^2_x (energy estimate)</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level2 lfo2;tab-stops:list 1.0in'><span class=SpellE>D_x</span>^{1/4}
      u is in L^4_t <span class=SpellE>BMO_x</span> (endpoint <span
      class=SpellE>Strichartz</span>) [<a href="references.html#KnPoVe1993">KnPoVe1993</a>]</li>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level2 lfo2;tab-stops:list 1.0in'><span class=SpellE>D_x</span>
      u is in L^\<span class=SpellE>infty_x</span> L^2_t (sharp Kato smoothing
      effect) [<a href="references.html#KnPoVe1993">KnPoVe1993</a>].&nbsp;
      Earlier versions of this estimate were obtained in [<a
      href="references.html#Ka1979b">Ka1979b</a>], [<a
      href="references.html#KrFa1983">KrFa1983</a>].</li>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level2 lfo2;tab-stops:list 1.0in'><span class=SpellE>D_x</span>^{-1/4}
      u is in L^4_x L^\<span class=SpellE>infty_t</span> (Maximal function) [<a
      href="references.html#KnPoVe1993">KnPoVe1993</a>], [<a
      href="references.html#KnRu1983">KnRu1983</a>]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level2 lfo2;tab-stops:list 1.0in'><span class=SpellE>D_x</span>^{-3/4-}
      u is in L^2_x L^\<span class=SpellE>infty_t</span> (L^2 maximal function)
      [<a href="references.html#KnPoVe1993">KnPoVe1993</a>]</li>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level2 lfo2;tab-stops:list 1.0in'><i>Remark</i>: Further
      estimates are available by <span class=SpellE>Sobolev</span>,
      differentiation, Holder, and interpolation.&nbsp; For instance:</li>
  <ul type=square>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level3 lfo2;tab-stops:list 1.5in'><span class=SpellE>D_x</span>
      u is in L^2_{<span class=SpellE>x,t</span>} locally in space [<a
      href="references.html#Ka1979b">Ka1979b</a>] - use Kato and Holder (can
      also be proven directly by integration by parts)</li>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level3 lfo2;tab-stops:list 1.5in'>u is in L^2_{<span
      class=SpellE>x,t</span>} locally in time - use energy and Holder</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level3 lfo2;tab-stops:list 1.5in'><span class=SpellE>D_x</span>^{3/4-}
      u is in L^8_x L^2_t locally in time - interpolate previous with Kato</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level3 lfo2;tab-stops:list 1.5in'><span class=SpellE>D_x</span>^{1/6}
      u is in L^6_{<span class=SpellE>x,t</span>} - interpolate energy with
      endpoint <span class=SpellE>Strichartz</span> (or Kato with maximal)</li>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level3 lfo2;tab-stops:list 1.5in'><span class=SpellE>D_x</span><span
      class=GramE>^{</span>1/8} u is in L^8_t L^4_x - interpolate energy with
      endpoint <span class=SpellE>Strichartz</span>.&nbsp; (In particular, <span
      class=SpellE>D_x</span><span class=GramE>^{</span>1/8} u is also in
      L^4_{<span class=SpellE>x,t</span>}).</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level3 lfo2;tab-stops:list 1.5in'>u is in L^8_{<span
      class=SpellE>x,t</span>}- use previous and <span class=SpellE>Sobolev</span>
 
      in space</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level3 lfo2;tab-stops:list 1.5in'>If u is in
      X^{0,1/3+}, then u is in L^4_{<span class=SpellE>x,t</span>} [<a
      href="references.html#Bo1993b">Bo1993b</a>] - interpolate previous with
      the trivial identity X^{0,0} = L^2</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level3 lfo2;tab-stops:list 1.5in'>If u is in
      X^{0,1/4+}, then <span class=SpellE>D_x</span>^{1/2} u is in L^4_x L^2_t
      [<a href="references.html#Bo1993b">Bo1993b</a>] - interpolate Kato with
      X^{0,0} = L^2</li>
 
  </ul>
</ul>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l4 level1 lfo2;tab-stops:list .5in'>If u is in X^{0,1/2+} on <b>T</b>,
    then</li>
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level2 lfo2;tab-stops:list 1.0in'><span class=GramE>u</span>
      is in L^\<span class=SpellE>infty_t</span> L^2_x (energy estimate).&nbsp;
 
      This is also true in the large period case.</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level2 lfo2;tab-stops:list 1.0in'><span class=GramE>u</span>
      is in L^4_{<span class=SpellE>x,t</span>} locally in time (in fact one
      only needs u in X^{0,1/3} for this) [<a href="references.html#Bo1993b">Bo1993b</a>].</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level2 lfo2;tab-stops:list 1.0in'><span class=SpellE>D_x</span><span
      class=GramE>^{</span>-\<span class=SpellE>eps</span>} u is in L^6_{<span
      class=SpellE>x,t</span>} locally in time. [<a
      href="references.html#Bo1993b">Bo1993b</a>].&nbsp; It is conjectured that
      this can be improved to L^8_{<span class=SpellE>x<span class=GramE>,t</span></span>}.</li>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level2 lfo2;tab-stops:list 1.0in'><i>Remark</i>: there
      is no smoothing on the circle, so one can never gain regularity.</li>
</ul>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l4 level1 lfo2;tab-stops:list .5in'>If u is in X^{0,1/2} on a
    circle with large period \lambda, then</li>
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level2 lfo2;tab-stops:list 1.0in'><span class=GramE>u</span>
      is in L^4_{<span class=SpellE>x,t</span>} locally in time, with a bound
      of \lambda^{0+}.</li>
 
  <ul type=square>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l4 level3 lfo2;tab-stops:list 1.5in'>In fact, when u has frequency
      N, the constant is like \lambda^{0+} (N<span class=GramE>^{</span>-1/8}
      + \lambda^{-1/4}), which recovers the 1/8 smoothing effect on the line
      in L^4 mentioned earlier. [<a href="references.html#CoKeStTaTk-p2">CoKeStTkTa-p2</a>]</li>
  </ul>
</ul>
</ul>
 
<h4 align=center style='text-align:center'>
 
<hr size=2 width="100%" align=center>
 
</h4>
 
<p class=MsoNormal align=center style='text-align:center'><a name="kdv_bilinear"></a><b>Bilinear
Airy estimates</b></p>
 
<ul type=disc>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l23 level1 lfo3;tab-stops:list .5in'>The key algebraic fact is</li>
</ul>
 
<p class=MsoNormal align=center style='text-align:center'><tt><span
style='font-size:10.0pt'>\xi_1^3 + \xi_2^3 + \xi_3^3 = 3 \xi_1 \xi_2 \xi_3</span></tt>
<br>
<tt><span style='font-size:10.0pt'>(whenever \xi_1 + \xi_2 + \xi_3 = 0)</span></tt></p>
 
<ul type=disc>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l11 level1 lfo4;tab-stops:list .5in'>The -3/4+ estimate [<a
    href="references.html#KnPoVe1996">KnPoVe1996</a>] on <b>R</b>:</li>
</ul>
 
<p class=MsoNormal align=center style='text-align:center'><tt><span
style='font-size:10.0pt'>|| (<span class=SpellE>uv</span><span class=GramE>)_</span>x
||_{-3/4+, -1/2+} &lt;~ || u ||_{-3/4+, 1/2+}&nbsp; || v ||_{-3/4+, 1/2+}</span></tt></p>
 
<ul type=disc>
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l10 level2 lfo5;tab-stops:list 1.0in'>The above estimate
      fails at the endpoint -3/4.&nbsp; [<a href="references.html#NaTkTs-p">NaTkTs2001</a>]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l10 level2 lfo5;tab-stops:list 1.0in'>As a corollary of
      this estimate we have the -3/8+ estimate [<a
      href="references.html#CoStTk1999">CoStTk1999</a>] on <b>R</b>: If u and v
      have no low frequencies ( |\xi| &lt;~ 1 ) then</li>
 
</ul>
</ul>
 
<p class=MsoNormal align=center style='text-align:center'><tt><span
style='font-size:10.0pt'>|| (<span class=SpellE>uv</span><span class=GramE>)_</span>x
||_{0, -1/2+} &lt;~ || u ||_{-3/8+, 1/2+}&nbsp; || v ||_{-3/8+, 1/2+}</span></tt></p>
 
<ul type=disc>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l27 level1 lfo6;tab-stops:list .5in'>The -1/2 estimate [<a
    href="references.html#KnPoVe1996">KnPoVe1996</a>] on <b>T</b>: if <span
    class=SpellE>u,v</span> have mean zero, then for all s &gt;= -1/2</li>
 
</ul>
 
<p class=MsoNormal align=center style='text-align:center'><tt><span
style='font-size:10.0pt'>|| (<span class=SpellE>uv</span><span class=GramE>)_</span>x
||_{s, -1/2} &lt;~ || u ||_{s, 1/2}&nbsp; || v ||_{s, 1/2}</span></tt></p>
 
<ul type=disc>
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l12 level2 lfo7;tab-stops:list 1.0in'>The above estimate
      fails for s &lt; -1/2.&nbsp; Also, one cannot replace 1/2, -1/2 by 1/2+,
      -1/2+.&nbsp; [<a href="references.html#KnPoVe1996">KnPoVe1996</a>]</li>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l12 level2 lfo7;tab-stops:list 1.0in'>This estimate also
      holds in the large period case if one is willing to lose a power of
      \lambda^{0+} in the constant. [<a href="references.html#CoKeStTaTk-p2">CoKeStTkTa-p2</a>]</li>
</ul>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l12 level1 lfo7;tab-stops:list .5in'><i>Remark</i>: In principle,
    a complete list of bilinear estimates could be obtained from [<a
    href="references.html#Ta-p2">Ta-p2</a>].</li>
</ul>
 
<div class=MsoNormal align=center style='text-align:center'>
 
<hr size=2 width="100%" align=center>
 
</div>
 
<p class=MsoNormal align=center style='text-align:center'><a
name="kdv_trilinear"></a><span class=SpellE><b>Trilinear</b></span><b> Airy
estimates</b></p>
 
<ul type=disc>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l3 level1 lfo8;tab-stops:list .5in'>The key algebraic fact is
    (various permutations of)</li>
</ul>
 
<p class=MsoNormal align=center style='text-align:center'><tt><span
style='font-size:10.0pt'>\xi_1^3 + \xi_2^3 + \xi_3^3 + \xi_4^3 = 3
(\xi_1+\xi_4) (\xi_2+\xi_4) (\xi_3+\xi_4)</span></tt> <br>
 
<tt><span style='font-size:10.0pt'>(whenever \xi_1 + \xi_2 + \xi_3 + \xi_4 = 0)</span></tt></p>
 
<ul type=disc>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l16 level1 lfo9;tab-stops:list .5in'>The 1/4 estimate [<a
    href="references.html#Ta-p2">Ta-p2</a>] on <b>R</b>:</li>
</ul>
 
<p class=MsoNormal align=center style='text-align:center'><tt><span
style='font-size:10.0pt'>|| (<span class=SpellE>uvw</span><span class=GramE>)_</span>x
||_{1/4, -1/2+} &lt;~ || u ||_{1/4, 1/2+}&nbsp; || v ||_{1/4, 1/2+} || w
||_{1/4, 1/2+}</span></tt></p>
 
<p class=MsoNormal style='mso-margin-top-alt:auto;margin-right:.5in;mso-margin-bottom-alt:
auto;margin-left:.5in'>The 1/4 is sharp [<a href="references.html#KnPoVe1996">KnPoVe1996</a>].<span
style='mso-spacerun:yes'>  </span>We also have</p>
 
<p class=MsoNormal align=center style='text-align:center'><tt><span
style='font-size:10.0pt'>|| <span class=SpellE><span class=GramE>uv<u>w</u></span></span>
||_{-1/4, -5/12+} &lt;~ || u ||_{-1/4, 7/12+}&nbsp; || v ||_{-1/4, 7/12+} || w
||_{-1/4, 7/12+}</span></tt></p>
 
<p class=MsoNormal style='mso-margin-top-alt:auto;margin-right:.5in;mso-margin-bottom-alt:
auto;margin-left:.5in'><span class=GramE>see</span> [<span class=SpellE>Cv</span>-p].</p>
 
<ul type=disc>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l15 level1 lfo10;tab-stops:list .5in'>The 1/2 estimate [<a
    href="references.html#CoKeStTaTk-p3">CoKeStTkTa-p3</a>] on <b>T</b>: if <span
    class=SpellE>u,v,w</span> have mean zero, then</li>
 
</ul>
 
<p class=MsoNormal align=center style='text-align:center'><tt><span
style='font-size:10.0pt'>|| (<span class=SpellE>uvw</span><span class=GramE>)_</span>x
||_{1/2, -1/2} &lt;~ || u ||_{1/2, 1/2*}&nbsp; || v ||_{1/2, 1/2*} || w
||_{1/2, 1/2*}</span></tt></p>
 
<p class=MsoNormal style='mso-margin-top-alt:auto;margin-right:.5in;mso-margin-bottom-alt:
auto;margin-left:.5in'>The 1/2 is sharp [<a href="references.html#KnPoVe1996">KnPoVe1996</a>].</p>
 
<ul type=disc>
 
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l28 level1 lfo11;tab-stops:list .5in'><i>Remark</i>: the <span
    class=SpellE>trilinear</span> estimate always needs one more derivative of
    regularity than the bilinear estimate; this is consistent with the heuristics
    from the Miura transform from <span class=SpellE>mKdV</span> to <span
    class=SpellE>KdV</span>.</li>
</ul>
 
<div class=MsoNormal align=center style='text-align:center'>
 
<hr size=2 width="100%" align=center>
 
</div>
 
<p class=MsoNormal align=center style='text-align:center'><a
name="KdV_multilinear"></a><span class=SpellE><b>Multilinear</b></span><b> Airy
estimates</b></p>
 
<ul type=disc>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l13 level1 lfo12;tab-stops:list .5in'>We have the <span
    class=SpellE>quintilinear</span> estimate on <b>R</b>: [<a
    href="references.html#CoKeStTaTk-p2">CoKeStTkTa-p2</a>]</li>
 
</ul>
 
<p class=MsoNormal align=center style='text-align:center'><tt><span
style='font-size:10.0pt'>\<span class=SpellE>int</span> u^3 v^2 <span
class=SpellE>dx</span> <span class=SpellE>dt</span> &lt;~ || u ||<span
class=GramE>_{</span>1/4+,1/2+}^3 || v ||_{-3/4+,1/2+}^2</span></tt></p>
 
<ul type=disc>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l5 level1 lfo13;tab-stops:list .5in'>The analogue for this on <b>T</b>
 
    is: [<a href="references.html#CoKeStTaTk-p2">CoKeStTkTa-p2</a>, <a
    href="references.html#CoKeStTaTk-p3">CoKeStTkTa-p3</a>]</li>
</ul>
 
<p class=MsoNormal align=center style='text-align:center'><tt><span
style='font-size:10.0pt'>\<span class=SpellE>int</span> u^3 v^2 <span
class=SpellE>dx</span> <span class=SpellE>dt</span> &lt;~ || u ||<span
class=GramE>_{</span>1/2,1/2*}^3 || v ||_{-1/2,1/2*}^2</span></tt></p>
 
<p class=MsoNormal style='mso-margin-top-alt:auto;margin-right:.5in;mso-margin-bottom-alt:
auto;margin-left:.5in'>In fact, this estimate also holds for large period, but
a loss of lambda<span class=GramE>^{</span>0+}.</p>
 
<div class=MsoNormal align=center style='text-align:center'>
 
<hr size=2 width="100%" align=center>
 
</div>
 
<p class=MsoNormal align=center style='text-align:center'><a name=kdv></a><b>The
<span class=SpellE>KdV</span> equation</b></p>
 
<p>The <span class=SpellE>KdV</span> equation is </p>
 
<p align=center style='text-align:center'><span class=SpellE>u_t</span> + <span
class=SpellE>u_xxx</span> + u <span class=SpellE>u_x</span> = 0.</p>
 
<p>It is completely <span class=SpellE>integrable</span>, and has infinitely
many conserved quantities.&nbsp; Indeed, for each non-negative integer k, there
is a conserved quantity which is roughly equivalent to the <span class=SpellE>H^k</span>
norm of u. </p>
 
<p>The <span class=SpellE>KdV</span> equation has been studied on the <a
href="#kdv_on_R">line</a>, the <a href="#kdv_on_T">circle</a>, and the <a
href="#KdV_on_R+">half-line</a>. </p>
 
<div class=MsoNormal align=center style='text-align:center'>
 
<hr size=2 width="100%" align=center>
 
</div>
 
<p class=MsoNormal align=center style='text-align:center'><a name="kdv_on_R"></a><span
class=SpellE><b>KdV</b></span><b> on R</b></p>
 
<ul type=disc>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l17 level1 lfo14;tab-stops:list .5in'>Scaling is <span
    class=SpellE>s_c</span> = -3/2.</li>
 
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l17 level1 lfo14;tab-stops:list .5in'>LWP in <span class=SpellE>H^s</span>
    for s &gt;= -3/4 [<span class=SpellE>CtCoTa</span>-p], using a modified
    Miura transform and the <a href="#mKdV_on_R"><span class=SpellE>mKdV</span>
    theory</a>.&nbsp; This is despite the failure of the key bilinear estimate
    [<a href="references.html#NaTkTs-p">NaTkTs2001</a>]</li>
 
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l17 level2 lfo14;tab-stops:list 1.0in'>For s within a
      logarithm for s=-3/4 [<span class=SpellE>MurTao</span>-p].</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l17 level2 lfo14;tab-stops:list 1.0in'>Was proven for s
      &gt; -3/4 [<a href="references.html#KnPoVe1996">KnPoVe1996</a>].</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l17 level2 lfo14;tab-stops:list 1.0in'>Was proven for s
      &gt; -5/8 in [<a href="references.html#KnPoVe1993b">KnPoVe1993b</a>].</li>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l17 level2 lfo14;tab-stops:list 1.0in'>Was proven for s
      &gt;= 0 in [<a href="references.html#Bo1993b">Bo1993b</a>].</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l17 level2 lfo14;tab-stops:list 1.0in'>Was proven for s
      &gt; 3/4 in [<a href="references.html#KnPoVe1993">KnPoVe1993</a>].</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l17 level2 lfo14;tab-stops:list 1.0in'>Was proven for s
      &gt; 3/2 in [<a href="references.html#BnSm1975">BnSm1975</a>], [<a
      href="references.html#Ka1975">Ka1975</a>], [<a
      href="references.html#Ka1979">Ka1979</a>], [<a
      href="references.html#GiTs1989">GiTs1989</a>], [<a
      href="references.html#Bu1980">Bu1980</a>]<span class=GramE>,&nbsp; ....</span></li>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l17 level2 lfo14;tab-stops:list 1.0in'>One has local ill-<span
      class=SpellE><span class=GramE>posedness</span></span><span class=GramE>(</span>in
      the sense that the map is not uniformly continuous) for s &lt; -3/4 (in
      the complex setting) by <span class=SpellE>soliton</span> examples [<a
      href="references.html#KnPoVe-p"><span class=SpellE>KnPoVe</span>-p</a>].</li>
  <ul type=square>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l17 level3 lfo14;tab-stops:list 1.5in'>For real <span
      class=SpellE>KdV</span> this has also been established in [<span
      class=SpellE>CtCoTa</span>-p], by the Miura transform and the <a
      href="#mKdV_on_R">corresponding result for <span class=SpellE>mKdV</span></a>.</li>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l17 level3 lfo14;tab-stops:list 1.5in'>Below -3/4 the
      solution map was known to not be C^3 [<a href="references.html#Bo1993b">Bo1993b</a>],
      [<a href="references.html#Bo1997">Bo1997</a>]; this was refined to C^2
      in [<a href="references.html#Tz1999b">Tz1999b</a>].</li>
  </ul>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l17 level2 lfo14;tab-stops:list 1.0in'>When the initial
      data is a real, rapidly decreasing measure one has a global smooth
      solution for t &gt; 0 [<a href="referencs.html#Kp1993">Kp1993</a>].&nbsp;
 
      Without the rapidly decreasing hypothesis one can still construct a
      global weak solution [<a href="references.html#Ts1989">Ts1989</a>]</li>
</ul>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l17 level1 lfo14;tab-stops:list .5in'>GWP in <span class=SpellE>H^s</span>
    for s &gt; -3/4 (if u is real) [<a href="references.html#CoKeStTaTk2003">CoKeStTkTa2003</a>].</li>
 
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l17 level2 lfo14;tab-stops:list 1.0in'>Was proven for s
      &gt; -3/10 in [<a href="references.html#CoKeStTkTa2001">CoKeStTkTa2001</a>]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l17 level2 lfo14;tab-stops:list 1.0in'>Was proven for
      s&gt;= 0 in [<a href="references.html#Bo1993b">Bo1993b</a>].&nbsp; Global
      weak solutions in L^2 were constructed in [<a
      href="references.html#Ka1983">Ka1983</a>], [<a
      href="references.html#KrFa1983">KrFa1983</a>], and were shown to obey the
      expected local smoothing estimate.&nbsp; These weak solutions were shown
      to be unique in [<a href="references.html#Zh1997b">Zh1997b</a>]</li>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l17 level2 lfo14;tab-stops:list 1.0in'>Was proven for
      s&gt;= 1 in [<a href="references.html#KnPoVe1993">KnPoVe1993</a>].</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l17 level2 lfo14;tab-stops:list 1.0in'>Was proven for
      s&gt;= 2 in [<a href="references.html#BnSm1975">BnSm1975</a>], [<a
      href="references.html#Ka1975">Ka1975</a>], [<a
      href="references.html#Ka1979">Ka1979</a>]<span class=GramE>, ....</span></li>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l17 level2 lfo14;tab-stops:list 1.0in'><i>Remark</i>: In
      the complex setting GWP fails for large data with Fourier support on the
      half-line [Bona/<span class=SpellE>Winther</span>?], [<span class=SpellE>Birnir</span>]<span
      class=GramE>, ????</span>.&nbsp; This result extends to a wide class of
      dispersive PDE.</li>
</ul>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l17 level1 lfo14;tab-stops:list .5in'>By use of the inverse
    scattering transform one can show that smooth solutions eventually resolve
    into <span class=SpellE>solitons</span>, that two colliding <span
    class=SpellE>solitons</span> emerge as (slightly phase shifted) <span
    class=SpellE>solitons</span>, etc.</li>
 
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l17 level1 lfo14;tab-stops:list .5in'><span class=SpellE>Solitons</span>
    are <span class=SpellE>orbitally</span> H^1 stable [<a
    href="references.html#Bj1972">Bj1972</a>]</li>
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l17 level2 lfo14;tab-stops:list 1.0in'>In <span
      class=SpellE>H^s</span>, 0 &lt;= s &lt; 1, the orbital stability of <span
      class=SpellE>solitons</span> is at most polynomial (the distance to the
      ground state manifold in <span class=SpellE>H^s</span> norm grows like at
      most O(t^{1-s+}) in time) [<span class=SpellE>RaySt</span>-p]</li>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l17 level2 lfo14;tab-stops:list 1.0in'>In L^2, orbital
      stability has been obtained in [<a href="references.html#MeVe2003">MeVe2003</a>].</li>
</ul>
</ul>
 
<p class=MsoNormal>The <span class=SpellE>KdV</span> equation can also be
generalized to a 2x2 system </p>
 
<p class=MsoNormal align=center style='text-align:center'><span class=SpellE><tt><span
style='font-size:10.0pt'>u_t</span></tt></span><tt><span style='font-size:10.0pt'>
 
+ <span class=SpellE>u_xxx</span> + a_3 <span class=SpellE>v_xxx</span> + u <span
class=SpellE>u_x</span> + a_1 v <span class=SpellE>v_x</span> + a_2 (<span
class=SpellE>uv</span><span class=GramE>)_</span>x = 0</span></tt> <br>
 
<tt><span style='font-size:10.0pt'>b_1 <span class=SpellE>v_t</span> + <span
class=SpellE>v_xxx</span> + b_2 a_3 <span class=SpellE>u_xxx</span> + v <span
class=SpellE>v_x</span> + b_2 a_2 u <span class=SpellE>u_x</span> + b_2 a_1 (<span
class=SpellE>uv</span>)_x + r <span class=SpellE>v_x</span></span></tt></p>
 
<p class=MsoNormal><span class=GramE>where</span> b_1,b_2 are positive
constants and a_1,a_2,a_3,r are real constants.&nbsp; This system was
introduced in [<a href="references.html#GeaGr1984">GeaGr1984</a>] to study
strongly interacting pairs of weakly nonlinear long waves, and studied further
in [<a href="references.html#BnPoSauTm1992">BnPoSauTm1992</a>].&nbsp; In [<a
href="references.html#AsCoeWgg1996">AsCoeWgg1996</a>] it was shown that this
system was also globally well-posed on L^2. <br>
It is an interesting question as to whether these results can be pushed further
to match the <span class=SpellE>KdV</span> theory; the apparent lack of
complete <span class=SpellE>integrability</span> in this system (for generic
choices of parameters <span class=SpellE>b_i</span>, <span class=SpellE>a_i</span>,
 
<span class=GramE>r</span>) suggests a possible difficulty. </p>
 
<div class=MsoNormal align=center style='text-align:center'>
 
<hr size=2 width="100%" align=center>
 
</div>
 
<p class=MsoNormal align=center style='text-align:center'><a name="KdV_on_R+"></a><span
class=SpellE><b>KdV</b></span><b> on R^+</b></p>
 
<ul type=disc>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l29 level1 lfo15;tab-stops:list .5in'>The <span class=SpellE>KdV</span>
 
    Cauchy-boundary problem on the half-line is</li>
</ul>
 
<p class=MsoNormal align=center style='text-align:center'><span class=SpellE>u_t</span>
+ u<span class=GramE>_{</span>xxx} + <span class=SpellE>u_x</span> + u <span
class=SpellE>u_x</span> = 0;&nbsp; u(x,0) = u_0(x);&nbsp; u(0,t) = h(t)</p>
 
<p class=MsoNormal style='margin-left:.5in'>The sign of u<span class=GramE>_{</span>xxx}
is important (it makes the influence of the boundary x=0 mostly negligible),
the sign of u <span class=SpellE>u_x</span> is not.&nbsp; The drift term <span
class=SpellE>u_x</span> appears naturally from the derivation of <span
class=SpellE>KdV</span> from fluid mechanics.&nbsp; (On R, this drift term can
be eliminated by a <span class=SpellE>Gallilean</span> transform, but this is
not available on the half-line). </p>
 
<ul type=disc>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l8 level1 lfo16;tab-stops:list .5in'>Because one is restricted to
    the half-line, it becomes a little tricky to use the Fourier
    transform.&nbsp; One approach is to use the Fourier-<span class=SpellE>Laplace</span>
    transform instead.</li>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l8 level1 lfo16;tab-stops:list .5in'>Some compatibility conditions
    between u_0 and h are needed.&nbsp; The higher the regularity, the more
    compatibility conditions are needed.&nbsp; If the initial data u_0 is in <span
    class=SpellE>H^s</span>, then by scaling heuristics the natural space for
    h is in H<span class=GramE>^{</span>(s+1)/3}.&nbsp; (Remember that time
    has dimensions <i>length</i>^3).</li>
 
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l8 level1 lfo16;tab-stops:list .5in'>LWP is known for initial
    data in <span class=SpellE>H^s</span> and boundary data in H<span
    class=GramE>^{</span>(s+1)/3} for s &gt;= 0 [<span class=SpellE>CoKe</span>-p],
    assuming compatibility.&nbsp; The drift term may be omitted because of the
    time localization.</li>
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l8 level2 lfo16;tab-stops:list 1.0in'>For s &gt; 3/4 this
      was proven in [<a href="references.html#BnSuZh-p"><span class=SpellE>BnSuZh</span>-p</a>]
      (assuming that there is a drift term).</li>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l8 level2 lfo16;tab-stops:list 1.0in'>Was proven for data
      in sufficiently weighted H^1 spaces in [<a href="references.html#Fa1983">Fa1983</a>].</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l8 level2 lfo16;tab-stops:list 1.0in'>From the real line
      theory one might expect to lower this to -3/4, but there appear to be
      technical difficulties with this.</li>
</ul>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l8 level1 lfo16;tab-stops:list .5in'>GWP is known for initial
    data in L^2 and boundary data in H<span class=GramE>^{</span>7/12},
    assuming compatibility.</li>
<ul type=circle>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l8 level2 lfo16;tab-stops:list 1.0in'>for initial data in
      H^1 and boundary data in H^{5/6}_loc this was proven in [<a
      href="references.html#BnSuZh-p"><span class=SpellE>BnSuZh</span>-p</a>]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l8 level2 lfo16;tab-stops:list 1.0in'>Was proven for smooth
      data in [<a href="references.html#BnWi1983">BnWi1983</a>]</li>
</ul>
</ul>
 
<div class=MsoNormal align=center style='text-align:center'>
 
<hr size=2 width="100%" align=center>
 
</div>
 
<p class=MsoNormal align=center style='text-align:center'><a name="kdv_on_T"></a><span
class=SpellE><b>KdV</b></span><b> on T</b></p>
 
<ul type=disc>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l6 level1 lfo17;tab-stops:list .5in'>Scaling is <span
    class=SpellE>s_c</span> = -3/2.</li>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l6 level1 lfo17;tab-stops:list .5in'>C^0 LWP in <span
    class=SpellE>H^s</span> for s &gt;= -1, assuming u is real [<span
    class=SpellE>KpTp</span>-p]</li>
 
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l6 level2 lfo17;tab-stops:list 1.0in'>C^0 LWP in <span
      class=SpellE>H^s</span> for s &gt;= -5/8 follows (at least in principle)
      from work on the <span class=SpellE>mKdV</span> equation by [Takaoka and <span
      class=SpellE>Tsutsumi</span>?]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l6 level2 lfo17;tab-stops:list 1.0in'>Analytic LWP in <span
      class=SpellE>H^s</span> for s &gt;= -1/2, in the complex case [<a
      href="references.html#KnPoVe1996">KnPoVe1996</a>].&nbsp; In addition to
      the usual bilinear estimate, one needs a linear estimate to keep the
      solution in <span class=SpellE>H^s</span> for t&gt;0.</li>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l6 level2 lfo17;tab-stops:list 1.0in'>Analytic LWP was
      proven for s &gt;= 0 in [<a href="references.html#Bo1993b">Bo1993b</a>].</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l6 level2 lfo17;tab-stops:list 1.0in'>Analytic ill <span
      class=SpellE>posedness</span> at s&lt;-1/2, even in the real case [<a
      href="references.html#Bo1997">Bo1997</a>]</li>
  <ul type=square>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l6 level3 lfo17;tab-stops:list 1.5in'>This has been
      refined to failure of uniform continuity at s&lt;-1/2 [<span
      class=SpellE>CtCoTa</span>-p]</li>
  </ul>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l6 level2 lfo17;tab-stops:list 1.0in'>Remark: s=-1/2 is the
      <span class=SpellE>symplectic</span> regularity, and so the machinery of
      infinite-dimensional <span class=SpellE>symplectic</span> geometry
      applies once one has a continuous flow, although there are some
      technicalities involving approximating <span class=SpellE>KdV</span> by a
      suitable <span class=SpellE>symplectic</span> finite-dimensional
      flow.&nbsp; In particular one has <span class=SpellE>symplectic</span>
 
      non-squeezing [CoKeStTkTa-p9], [<a href="references.html#Bo1999">Bo1999</a>].</li>
</ul>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l6 level1 lfo17;tab-stops:list .5in'>C^0 GWP in <span
    class=SpellE>H^s</span> for s &gt;= -1, in the real case [<span
    class=SpellE>KpTp</span>-p].</li>
<ul type=circle>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l6 level2 lfo17;tab-stops:list 1.0in'>Analytic GWP in <span
      class=SpellE>H^s</span> in the real case for s &gt;= -1/2 [<a
      href="references.html#CoKeStTaTk-p2">CoKeStTkTa-p2</a>]; see also [<a
      href="references.html#CoKeStTaTk-p3">CoKeStTkTa-p3</a>].</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l6 level2 lfo17;tab-stops:list 1.0in'>A short proof for the
      s &gt; -3/10 case is in [<a href="references.html#CoKeStTaTk-p2a">CoKeStTkTa-p2a</a>]</li>
 
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l6 level2 lfo17;tab-stops:list 1.0in'>Was proven for s
      &gt;= 0 in [<a href="references.html#Bo1993b">Bo1993b</a>].</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l6 level2 lfo17;tab-stops:list 1.0in'>GWP for real initial
      data which are measures of small norm [<a href="references.html#Bo1997">Bo1997</a>]
      <span class=GramE>The</span> small norm restriction is presumably
      technical.</li>
  <ul type=square>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l6 level3 lfo17;tab-stops:list 1.5in'><i>Remark</i>:
      measures have the same scaling as H<span class=GramE>^{</span>-1/2}, but
      neither space includes the other.&nbsp; (Measures are in H<span
      class=GramE>^{</span>-1/2-\eps} though).</li>
 
  </ul>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l6 level2 lfo17;tab-stops:list 1.0in'>One has GWP for real
      random data whose Fourier coefficients decay like 1/|k| (times a Gaussian
      random variable) [<a href="references.html#Bo1995c">Bo1995c</a>].&nbsp;
      Indeed one has an invariant measure.</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l6 level2 lfo17;tab-stops:list 1.0in'><span class=SpellE>Solitons</span>
      are asymptotically H^1 stable [MtMe-p3], [<span class=SpellE>MtMe</span>-p].<span
      style='mso-spacerun:yes'>  </span>Indeed, the solution decouples into a
      finite sum of <span class=SpellE>solitons</span> plus dispersive
      radiation [<a href="references.html#EckShr1988">EckShr1988</a>]</li>
 
</ul>
</ul>
 
<div class=MsoNormal align=center style='text-align:center'>
 
<hr size=2 width="100%" align=center>
 
</div>
 
<p class=MsoNormal align=center style='text-align:center'><a name=mkdv></a><b>The
modified <span class=SpellE>KdV</span> equation</b></p>
 
<p>The (<span class=SpellE>defocussing</span>) <span class=SpellE>mKdV</span>
 
equation is </p>
 
<p align=center style='text-align:center'><span class=SpellE>u_t</span> + <span
class=SpellE>u_xxx</span> = 6 u^2 <span class=SpellE>u_x</span>.</p>
 
<p>It is completely <span class=SpellE>integrable</span>, and has infinitely
many conserved quantities.&nbsp; Indeed, for each non-negative integer k, there
is a conserved quantity which is roughly equivalent to the <span class=SpellE>H^k</span>
 
norm of u.&nbsp; This equation has been studied on the <a href="#mKdV_on_R">line</a>,
<a href="#mKdV_on_T">circle</a>, and <a href="#gKdV_on_R+">half-line</a>. </p>
 
<p>The <i>Miura transformation</i> v = <span class=SpellE>u_x</span> + u^2
transforms a solution of <span class=SpellE>defocussing</span> <span
class=SpellE>mKdV</span> to a solution of <a href="#kdv"><span class=SpellE>KdV</span></a>
 
</p>
 
<p align=center style='text-align:center'><span class=SpellE>v_t</span> + <span
class=SpellE>v_xxx</span> = 6 v <span class=SpellE>v_x</span>.</p>
 
<p>Thus one expects the LWP and GWP theory for <span class=SpellE>mKdV</span>
to be one derivative higher than that for <span class=SpellE>KdV</span>. </p>
 
<p>The <span class=SpellE>focussing</span> <span class=SpellE>mKdV</span> </p>
 
<p class=MsoNormal align=center style='text-align:center'><span class=SpellE>u_t</span>
+ <span class=SpellE>u_xxx</span> = - 6 u^2 <span class=SpellE>u_x</span></p>
 
<p><span class=GramE>is</span> very similar, except that the Miura transform is
now v = <span class=SpellE>u_x</span> + <span class=SpellE>i</span> u^2.&nbsp;
This transforms <span class=SpellE>focussing</span> <span class=SpellE>mKdV</span>
to <i>complex-valued</i> <span class=SpellE>KdV</span>, which is a slightly
less tractable equation.&nbsp; (However, the transformed solution v is still
real in the highest order term, so in principle the real-valued theory carries
over to this case). </p>
 
<p>The Miura transformation can be generalized.&nbsp; If v and w solve the
system </p>
 
<p class=MsoNormal align=center style='text-align:center'><span class=SpellE>v_t</span>
+ <span class=SpellE>v_xxx</span> = 6(v^2 + w) <span class=SpellE>v_x</span> <br>
<span class=SpellE>w_t</span> + <span class=SpellE>w_xxx</span> = 6(v^2 + w) <span
class=SpellE>w_x</span></p>


<p class=MsoNormal>Then u = v^2 + <span class=SpellE>v_x</span> + w is a
The x variable is usually assumed to live on the real line R (so there is some decay at infinity) or on the <span class="SpellE">torus</span> T (so the data is periodic). The half-line has also been studied, as has the case of periodic data with large period. It might be interesting to look at whether the periodicity assumption can be perturbed (e.g. quasi-periodic data); it is not clear whether the phenomena we see in the periodic problem are robust under perturbations, or are number-theoretic <span class="SpellE">artefacts</span> of perfect periodicity.
solution of <span class=SpellE>KdV</span>.&nbsp; In particular, if a and b are
constants and v solves </p>


<p class=MsoNormal align=center style='text-align:center'><span class=SpellE>v_t</span>
When <span class="GramE">P(</span>u) = c u^{k+1}, then the equation is referred to as generalized <span class="SpellE">gKdV</span> of order k, or <span class="SpellE">gKdV</span>-k. <span class="GramE">gKdV-1</span> is the original <span class="SpellE">Korteweg</span> de <span class="SpellE">Vries</span> (<span class="SpellE">KdV</span>) equation, gKdV-2 is the modified <span class="SpellE">KdV</span> (<span class="SpellE">mKdV</span>) equation. <span class="SpellE">KdV</span> and <span class="SpellE">mKdV</span> are quite special, being the only equations in this family which are completely <span class="SpellE">integrable</span>.
+ <span class=SpellE>v_xxx</span> = 6(a^2 v^2 + <span class=SpellE><span
class=GramE>bv</span></span>) <span class=SpellE>v_x</span></p>


<p class=MsoNormal><span class=GramE>then</span> u = a^2 v^2 + <span
If k is even, the sign of c is important. The c < 0 case is known as the <span class="SpellE">defocussing</span> case, while c > 0 is the <span class="SpellE">focussing</span> case. When k is odd, the constant c can always be scaled out, so we do not distinguish <span class="SpellE">focussing</span> and <span class="SpellE">defocussing</span> in this case.
class=SpellE>av_x</span> + <span class=SpellE>bv</span> solves <span
class=SpellE>KdV</span> (this is the <i>Gardener transform</i>). </p>


<div class=MsoNormal align=center style='text-align:center'>
Drift terms <span class="SpellE">u_x</span> can be added, but they can be subsumed into the polynomial <span class="GramE">P(</span>u) or eliminated by a <span class="SpellE">Gallilean</span> transformation [except in the half-line case]. Indeed, one can freely insert or remove any term of the form a'(t) <span class="SpellE">u_x</span> by shifting the x variable by <span class="GramE">a(</span>t), which is especially useful for periodic higher-order <span class="SpellE">gKdV</span> equations (setting a'(t) equal to the mean of P(u(t))).


<hr size=2 width="100%" align=center>
<span class="SpellE">KdV</span>-type equations on R or T always come with three conserved quantities:
 
</div>


<p class=MsoNormal align=center style='text-align:center'><a name="mKdV_on_R"></a><span
<center>Mass: \<span class="SpellE">int</span> u <span class="SpellE">dx</span><br /> L^2: \<span class="SpellE">int</span> u^2 <span class="SpellE">dx</span><br /> Hamiltonian: \<span class="SpellE">int</span> u_x^2 - <span class="GramE">V(</span>u) <span class="SpellE">dx</span></center>
class=SpellE><span class=GramE><b>mKdV</b></span></span><b> on R and R^+</b></p>


<ul type=disc>
<span class="GramE">where</span> V is a primitive of P. Note that the Hamiltonian is positive-definite in the <span class="SpellE">defocussing</span> cases (if u is real); thus the <span class="SpellE">defocussing</span> equations have a better chance of long-term existence. The mass has no definite sign and so is only useful in specific cases (e.g. perturbations of a <span class="SpellE">soliton</span>).
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l18 level1 lfo18;tab-stops:list .5in'>Scaling is <span
    class=SpellE>s_c</span> = -1/2.</li>


<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
In general, the above three quantities are the only conserved quantities available, but the [#kdv <span class="SpellE">KdV</span>] and [#mkdv <span class="SpellE">mKdV</span>] equations come with infinitely many more such conserved quantities due to their completely <span class="SpellE">integrable</span> nature.
    mso-list:l18 level1 lfo18;tab-stops:list .5in'>LWP in <span class=SpellE>H^s</span>
    for s &gt;= 1/4 [<a href="references.html#KnPoVe1993">KnPoVe1993</a>]</li>
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l18 level2 lfo18;tab-stops:list 1.0in'>Was shown for
      s&gt;3/2 in [<a href="references.html#GiTs1989">GiTs1989</a>]</li>


  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
The critical (or scaling) regularity is
      auto;mso-list:l18 level2 lfo18;tab-stops:list 1.0in'>This is sharp in the
      <span class=SpellE>focussing</span> case [<a
      href="references.html#KnPoVe-p"><span class=SpellE>KnPoVe</span>-p</a>],
      in the sense that the solution map is no longer uniformly continuous for
      s &lt; 1/4.</li>
  <ul type=square>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l18 level3 lfo18;tab-stops:list 1.5in'>This has been
      extended to the <span class=SpellE>defocussing</span> case in [<span
      class=SpellE>CtCoTa</span>-p], by a high-frequency approximation of <span
      class=SpellE>mKdV</span> by <a href="schrodinger.html#Cubic NLS on R">NLS</a>.&nbsp;


      (This high frequency approximation has also been utilized in [<a
<center><span class="SpellE">s_c</span> = 1/2 - 2/k.</center>
      href="references.html#Sch1998">Sch1998</a>]).</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l18 level3 lfo18;tab-stops:list 1.5in'>Below 1/4 the
      solution map was known to not be C^3 in [<a
      href="references.html#Bo1993b">Bo1993b</a>], [<a
      href="references.html#Bo1997">Bo1997</a>].</li>
  </ul>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l18 level2 lfo18;tab-stops:list 1.0in'>The same result has
      also been established for the half-line [<span class=SpellE>CoKe</span>-p],
      assuming boundary data is in H<span class=GramE>^{</span>(s+1)/3} of
      course.</li>


  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
In particular, [#kdv <span class="SpellE">KdV</span>], [#mkdv <span class="SpellE">mKdV</span>], and gKdV-3 are <span class="SpellE">subcritical</span> with respect to L^2, gKdV-4 is L^2 critical, and all the other equations are L^2 supercritical. Generally speaking, the potential energy term V(u) can be pretty much ignored in the sub-critical equations, needs to be dealt with carefully in the critical equation, and can completely dominate the Hamiltonian in the super-critical equations (to the point that blowup occurs if the equation is not <span class="SpellE">defocussing</span>). Note that H^1 is always a sub-critical regularity.
      auto;mso-list:l18 level2 lfo18;tab-stops:list 1.0in'>Global weak
      solutions in L^2 were constructed in [<a href="references.html#Ka1983">Ka1983</a>].&nbsp;
      Thus in L^2 one has global existence but no uniform continuity.</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l18 level2 lfo18;tab-stops:list 1.0in'>Uniqueness is also
      known when the initial data lies in the weighted space &lt;x&gt;^{3/8}
      u_0 in L^2 [<a href="references.html#GiTs1989">GiTs1989</a>]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l18 level2 lfo18;tab-stops:list 1.0in'>LWP has also been
      demonstrated when &lt;xi&gt;^s hat(u_0) lies in L^{r&#8217;} for 4/3 &lt;


      r &lt;= 2 and s &gt;= ½ - 1/2r [Gr-p4]</li>
The dispersion relation \<span class="SpellE">tau</span> = \xi^3 is always increasing, which means that singularities always propagate to the left. In fact, high frequencies propagate leftward at extremely high speeds, which causes a smoothing effect if there is some decay in the initial data (L^2 will do). On the other hand, <span class="SpellE">KdV</span>-type equations have the remarkable property of supporting localized <span class="SpellE">travelling</span> wave solutions known as <span class="SpellE">solitons</span>, which propagate to the right. It is known that solutions to the completely <span class="SpellE">integrable</span> equations (i.e. <span class="SpellE">KdV</span> and <span class="SpellE">mKdV</span>) always resolve to a superposition of <span class="SpellE">solitons</span> as t -> infinity, but it is an interesting open question as to whether the same phenomenon occurs for the other <span class="SpellE">KdV</span>-type equations.
</ul>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l18 level1 lfo18;tab-stops:list .5in'>GWP in <span class=SpellE>H^s</span>
    for s &gt; 1/4 [<a href="references.html#CoKeStTaTk-p2">CoKeStTkTa-p2</a>],
    via the <span class=SpellE>KdV</span> theory and the Miura transform, for
    both the <span class=SpellE>focussing</span> and <span class=SpellE>defocussing</span>


    cases.</li>
A <span class="SpellE">KdV</span>-type equation can be viewed as a <span class="SpellE">symplectic</span> flow with the Hamiltonian defined above, and the <span class="SpellE">symplectic</span> form given by
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l18 level2 lfo18;tab-stops:list 1.0in'>Was proven for
      s&gt;3/5 in [<a href="references.html#FoLiPo1999">FoLiPo1999</a>]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l18 level2 lfo18;tab-stops:list 1.0in'>Is implicit for s
      &gt;= 1 from [<a href="references.html#KnPoVe1993">KnPoVe1993</a>]</li>


  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
<center>{<span class="GramE">u</span>, v} := \<span class="SpellE">int</span> u <span class="SpellE">v_x</span> <span class="SpellE">dx</span>.</center>
      auto;mso-list:l18 level2 lfo18;tab-stops:list 1.0in'>On the half-line GWP
      is known when s &gt;= 1 and the boundary data is in H^{11/12}, assuming
      compatibility and small L^2 norm [<span class=SpellE>CoKe</span>-p]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l18 level2 lfo18;tab-stops:list 1.0in'>GWP for smooth data
      can also be achieved from inverse scattering methods [<span class=SpellE>BdmFsShp</span>-p];
      the same approach also works on an interval [<span class=SpellE>BdmShp</span>-p].</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l18 level2 lfo18;tab-stops:list 1.0in'><span class=SpellE>Solitions</span>
      are asymptotically H^1 stable [MtMe-p3], [<span class=SpellE>MtMe</span>-p]</li>


</ul>
Thus H<span class="GramE">^{</span>-1/2} is the natural Hilbert space in which to study the <span class="SpellE">symplectic</span> geometry of these flows. Unfortunately, the <span class="SpellE">gKdV</span>-k equations are only locally well-posed in H<span class="GramE">^{</span>-1/2} when k=1.
</ul>


<div class=MsoNormal align=center style='text-align:center'>
<div class="MsoNormal" style="text-align: center"><center>
----
</center></div>


<hr size=2 width="100%" align=center>
<center>'''Airy estimates'''</center>


</div>
Solutions to the Airy equation and its perturbations are either estimated in mixed space-time norms <span class="SpellE">L^q_t</span> <span class="SpellE">L^r_x</span>, <span class="SpellE">L^r_x</span> <span class="SpellE">L^q_t</span>, or in X^{<span class="SpellE">s<span class="GramE">,b</span></span>} spaces, defined by


<p class=MsoNormal align=center style='text-align:center'><a name="mKdV_on_T"></a><span
<center><tt><font size="10.0pt"><nowiki>|| u ||_{</nowiki><span class="SpellE">s<span class="GramE">,b</span></span>} = || <xi>^s <tau-xi^3>^b \hat{u} ||_2.</font></tt></center>
class=SpellE><span class=GramE><b>mKdV</b></span></span><b> on T</b></p>


<ul type=disc>
Linear space-time estimates in which the space norm is evaluated first are known as [#kdv_linear <span class="SpellE">Strichartz</span> estimates], but these estimates only play a minor role in the theory. A more important category of linear estimates are the smoothing estimates and maximal function estimates. The X^{<span class="SpellE">s<span class="GramE">,b</span></span>} spaces are used primarily for [#kdv_bilinear bilinear estimates], although more recently [#KdV_multilinear <span class="SpellE">multilinear</span> estimates have begun to appear]. These spaces and estimates first appear in the context of the <span class="SpellE">Schrodinger</span> equation in [[references.html#Bo1993b Bo1993b]], although the analogues spaces for the wave equation appeared earlier [[references.html#RaRe1982 RaRe1982]], [[references.html#Be1983 Be1983]] in the context of <span class="SpellE">propogation</span> of singularities. See also [[references.html#Bo1993 Bo1993]], [[references.html#KlMa1993 KlMa1993]].
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l7 level1 lfo19;tab-stops:list .5in'>Scaling is <span
    class=SpellE>s_c</span> = -1/2.</li>


<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
<div class="MsoNormal" style="text-align: center"><center>
    mso-list:l7 level1 lfo19;tab-stops:list .5in'>C^0 LWP in L^2 in the
----
    defocusing case [KpTp-p2]</li>
</center></div>
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l7 level2 lfo19;tab-stops:list 1.0in'>C^0 LWP in <span
      class=SpellE>H^s</span> for s &gt; 3/8 [Takaoka and <span class=SpellE>Tsutsumi</span>?]<span
      style='mso-spacerun:yes'>  </span>Note one has to gauge away a nonlinear
      resonance term before one can apply iteration methods.</li>


  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
<center>'''Linear Airy estimates'''</center>
      auto;mso-list:l7 level2 lfo19;tab-stops:list 1.0in'>Analytic LWP in <span
      class=SpellE>H^s</span> for s &gt;= 1/2, in both focusing and defocusing
      cases [<a href="references.html#KnPoVe1993">KnPoVe1993</a>], [<a
      href="references.html#Bo1993b">Bo1993b</a>].</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l7 level2 lfo19;tab-stops:list 1.0in'>This is sharp in the
      sense of analytic well-<span class=SpellE>posedness</span> [<a
      href="references.html#KnPoVe1996">KnPoVe1996</a>] or uniform well-<span
      class=SpellE>posedness</span> [<span class=SpellE>CtCoTa</span>-p]</li>


</ul>
* If u is in X^{0,1/2+} on '''R''', then
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
** u is in L^\<span class="SpellE">infty_t</span> L^2_x (energy estimate)
    mso-list:l7 level1 lfo19;tab-stops:list .5in'>C^0 GWP in L^2 in the
** <span class="SpellE">D_x</span>^{1/4} u is in L^4_t <span class="SpellE">BMO_x</span> (endpoint <span class="SpellE">Strichartz</span>) [[references.html#KnPoVe1993 KnPoVe1993]]
    defocusing case [KpTp-p2]</li>
** <span class="SpellE">D_x</span> u is in L^\<span class="SpellE">infty_x</span> L^2_t (sharp Kato smoothing effect) [[references.html#KnPoVe1993 KnPoVe1993]]. Earlier versions of this estimate were obtained in [[references.html#Ka1979b Ka1979b]], [[references.html#KrFa1983 KrFa1983]].
<ul type=circle>
** <span class="SpellE">D_x</span>^{-1/4} u is in L^4_x L^\<span class="SpellE">infty_t</span> (Maximal function) [[references.html#KnPoVe1993 KnPoVe1993]], [[references.html#KnRu1983 KnRu1983]]
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
** <span class="SpellE">D_x</span>^{-3/4-} u is in L^2_x L^\<span class="SpellE">infty_t</span> (L^2 maximal function) [[references.html#KnPoVe1993 KnPoVe1993]]
      auto;mso-list:l7 level2 lfo19;tab-stops:list 1.0in'>Analytic GWP in <span
** ''Remark''<nowiki>: Further estimates are available by </nowiki><span class="SpellE">Sobolev</span>, differentiation, Holder, and interpolation. For instance:
      class=SpellE>H^s</span> for s &gt;= 1/2<span class=GramE>&nbsp; [</span><a
*** <span class="SpellE">D_x</span> u is in L^2_{<span class="SpellE">x,t</span>} locally in space [[references.html#Ka1979b Ka1979b]] - use Kato and Holder (can also be proven directly by integration by parts)
      href="references.html#CoKeStTaTk-p2">CoKeStTkTa-p2</a>], via the <span
*** u is in L^2_{<span class="SpellE">x,t</span>} locally in time - use energy and Holder
      class=SpellE>KdV</span> theory and the Miura transform, for both the <span
*** <span class="SpellE">D_x</span>^{3/4-} u is in L^8_x L^2_t locally in time - interpolate previous with Kato
      class=SpellE>focussing</span> and <span class=SpellE>defocussing</span>
*** <span class="SpellE">D_x</span>^{1/6} u is in L^6_{<span class="SpellE">x,t</span>} - interpolate energy with endpoint <span class="SpellE">Strichartz</span> (or Kato with maximal)
*** <span class="SpellE">D_x</span><span class="GramE">^{</span>1/8} u is in L^8_t L^4_x - interpolate energy with endpoint <span class="SpellE">Strichartz</span>. (In particular, <span class="SpellE">D_x</span><span class="GramE">^{</span>1/8} u is also in L^4_{<span class="SpellE">x,t</span>}).
*** u is in L^8_{<span class="SpellE">x,t</span>}- use previous and <span class="SpellE">Sobolev</span> in space
*** If u is in X^{0,1/3+}, then u is in L^4_{<span class="SpellE">x,t</span>} [[references.html#Bo1993b Bo1993b]] - interpolate previous with the trivial identity X^{0,0} = L^2
*** If u is in X^{0,1/4+}, then <span class="SpellE">D_x</span>^{1/2} u is in L^4_x L^2_t [[references.html#Bo1993b Bo1993b]] - interpolate Kato with X^{0,0} = L^2
* If u is in X^{0,1/2+} on '''T''', then
** <span class="GramE">u</span> is in L^\<span class="SpellE">infty_t</span> L^2_x (energy estimate). This is also true in the large period case.
** <span class="GramE">u</span> is in L^4_{<span class="SpellE">x,t</span>} locally in time (in fact one only needs u in X^{0,1/3} for this) [[references.html#Bo1993b Bo1993b]].
** <span class="SpellE">D_x</span><span class="GramE">^{</span>-\<span class="SpellE">eps</span>} u is in L^6_{<span class="SpellE">x,t</span>} locally in time. [[references.html#Bo1993b Bo1993b]]. It is conjectured that this can be improved to L^8_{<span class="SpellE">x<span class="GramE">,t</span></span>}.
** ''Remark''<nowiki>: there is no smoothing on the circle, so one can never gain regularity.</nowiki>
* If u is in X^{0,1/2} on a circle with large period \lambda, then
** <span class="GramE">u</span> is in L^4_{<span class="SpellE">x,t</span>} locally in time, with a bound of \lambda^{0+}.
*** In fact, when u has frequency N, the constant is like \lambda^{0+} (N<span class="GramE">^{</span>-1/8} + \lambda^{-1/4}), which recovers the 1/8 smoothing effect on the line in L^4 mentioned earlier. [[references.html#CoKeStTaTk-p2 CoKeStTkTa-p2]]


      cases.</li>
====----====
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l7 level2 lfo19;tab-stops:list 1.0in'>Was proven for s
      &gt;= 1 in [<a href="references.html#KnPoVe1993">KnPoVe1993</a>], [<a
      href="references.html#Bo1993b">Bo1993b</a>].</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l7 level2 lfo19;tab-stops:list 1.0in'>One has GWP for
      random data whose Fourier coefficients decay like 1/|k| (times a Gaussian
      random variable) [<a href="references.html#Bo1995c">Bo1995c</a>].&nbsp;
      Indeed one has an invariant measure.&nbsp; Note that such data barely
      fails to be in H<span class=GramE>^{</span>1/2}, however one can modify
      the local well-<span class=SpellE>posedness</span> theory to go below
      H^{1/2} provided that one has a decay like O(|k|^{-1+\eps}) on the
      Fourier coefficients (which is indeed the case almost surely).</li>


</ul>
<center>'''Bilinear Airy estimates'''</center>
</ul>


<div class=MsoNormal align=center style='text-align:center'>
* The key algebraic fact is


<hr size=2 width="100%" align=center>
<center><tt><font size="10.0pt">\xi_1^3 + \xi_2^3 + \xi_3^3 = 3 \xi_1 \xi_2 \xi_3</font></tt><br /><tt><font size="10.0pt">(whenever \xi_1 + \xi_2 + \xi_3 = 0)</font></tt></center>


</div>
* The -3/4+ estimate [[references.html#KnPoVe1996 KnPoVe1996]] on '''R'''<nowiki>:</nowiki>


<p class=MsoNormal align=center style='text-align:center'><a name="gKdV_3_on_R"></a><span
<center><tt><font size="10.0pt"><nowiki>|| (</nowiki><span class="SpellE">uv</span><span class="GramE">)_</span>x ||_{-3/4+, -1/2+} <~ || u ||_{-3/4+, 1/2+} || v ||_{-3/4+, 1/2+}</font></tt></center>
class=GramE><b>gKdV_3</b></span><b> on R and R^+</b></p>


<ul type=disc>
** The above estimate fails at the endpoint -3/4. [[references.html#NaTkTs-p NaTkTs2001]]
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
** As a corollary of this estimate we have the -3/8+ estimate [[references.html#CoStTk1999 CoStTk1999]] on '''R'''<nowiki>: If u and v have no low frequencies ( |\xi| <~ 1 ) then</nowiki>
    mso-list:l30 level1 lfo20;tab-stops:list .5in'>Scaling is <span
    class=SpellE>s_c</span> = -1/6.</li>


<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
<center><tt><font size="10.0pt"><nowiki>|| (</nowiki><span class="SpellE">uv</span><span class="GramE">)_</span>x ||_{0, -1/2+} <~ || u ||_{-3/8+, 1/2+} || v ||_{-3/8+, 1/2+}</font></tt></center>
    mso-list:l30 level1 lfo20;tab-stops:list .5in'>LWP in <span class=SpellE>H^s</span>
    for s &gt; -1/6 [Gr-p3]</li>
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l30 level2 lfo20;tab-stops:list 1.0in'>Was shown for
      s&gt;=1/12 [<a href="references.html#KnPoVe1993">KnPoVe1993</a>]</li>


  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
* The -1/2 estimate [[references.html#KnPoVe1996 KnPoVe1996]] on '''T'''<nowiki>: if </nowiki><span class="SpellE">u,v</span> have mean zero, then for all s >= -1/2
      auto;mso-list:l30 level2 lfo20;tab-stops:list 1.0in'>Was shown for
      s&gt;3/2 in [<a href="references.html#GiTs1989">GiTs1989</a>]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l30 level2 lfo20;tab-stops:list 1.0in'>The result s &gt;=
      1/12 has also been established for the half-line [<span class=SpellE>CoKe</span>-p],
      assuming boundary data is in H<span class=GramE>^{</span>(s+1)/3} of
      course..</li>
</ul>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l30 level1 lfo20;tab-stops:list .5in'>GWP in <span class=SpellE>H^s</span>


    for s &gt;= 0 [Gr-p3]</li>
<center><tt><font size="10.0pt"><nowiki>|| (</nowiki><span class="SpellE">uv</span><span class="GramE">)_</span>x ||_{s, -1/2} <~ || u ||_{s, 1/2} || v ||_{s, 1/2}</font></tt></center>
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l30 level2 lfo20;tab-stops:list 1.0in'>For s&gt;=1 this is
      in [<a href="references.html#KnPoVe1993">KnPoVe1993</a>]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l30 level2 lfo20;tab-stops:list 1.0in'>Presumably one can
      use either the Fourier truncation method or the &quot;I-method&quot; to
      go below L^2.&nbsp; Even though the equation is not completely <span
      class=SpellE>integrable</span>, the one-dimensional nature of the
      equation suggests that &quot;correction term&quot; techniques will also
      be quite effective.</li>


  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
** The above estimate fails for s < -1/2. Also, one cannot replace 1/2, -1/2 by 1/2+, -1/2+. [[references.html#KnPoVe1996 KnPoVe1996]]
      auto;mso-list:l30 level2 lfo20;tab-stops:list 1.0in'>On the half-line GWP
** This estimate also holds in the large period case if one is willing to lose a power of \lambda^{0+} in the constant. [[references.html#CoKeStTaTk-p2 CoKeStTkTa-p2]]
      is known when s &gt;= 1 and the boundary data is in H^{5/4}, assuming
* ''Remark''<nowiki>: In principle, a complete list of bilinear estimates could be obtained from [</nowiki>[references.html#Ta-p2 Ta-p2]].
      compatibility and small L^2 norm [<span class=SpellE>CoKe</span>-p]</li>
</ul>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l30 level1 lfo20;tab-stops:list .5in'><span class=SpellE>Solitons</span>
    are H^1-stable [<a href="references.html#CaLo1982">CaLo1982</a>], [<a
    href="references.html#Ws1986">Ws1986</a>], [<a
    href="references.html#BnSouSr1987">BnSouSr1987</a>] and asymptotically H^1
    stable [MtMe-p3], [<span class=SpellE>MtMe</span>-p]</li>


</ul>
<div class="MsoNormal" style="text-align: center"><center>
----
</center></div>


<div class=MsoNormal align=center style='text-align:center'>
<center><span class="SpellE">'''Trilinear'''</span>''' Airy estimates'''</center>


<hr size=2 width="100%" align=center>
* The key algebraic fact is (various permutations of)


</div>
<center><tt><font size="10.0pt">\xi_1^3 + \xi_2^3 + \xi_3^3 + \xi_4^3 = 3 (\xi_1+\xi_4) (\xi_2+\xi_4) (\xi_3+\xi_4)</font></tt><br /><tt><font size="10.0pt">(whenever \xi_1 + \xi_2 + \xi_3 + \xi_4 = 0)</font></tt></center>


<p class=MsoNormal align=center style='text-align:center'><a name="gKdV_3_on_T"></a><span
* The 1/4 estimate [[references.html#Ta-p2 Ta-p2]] on '''R'''<nowiki>:</nowiki>
class=GramE><b>gKdV_3</b></span><b> on T</b></p>


<ul type=disc>
<center><tt><font size="10.0pt"><nowiki>|| (</nowiki><span class="SpellE">uvw</span><span class="GramE">)_</span>x ||_{1/4, -1/2+} <~ || u ||_{1/4, 1/2+} || v ||_{1/4, 1/2+} || w ||_{1/4, 1/2+}</font></tt></center>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l24 level1 lfo21;tab-stops:list .5in'>Scaling is <span
    class=SpellE>s_c</span> = -1/6.</li>


<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
The 1/4 is sharp [[references.html#KnPoVe1996 KnPoVe1996]].We also have
    mso-list:l24 level1 lfo21;tab-stops:list .5in'>LWP in <span class=SpellE>H^s</span>
    for s&gt;=1/2&nbsp; [<a href="references.html#CoKeStTaTk-p3">CoKeStTkTa-p3</a>]</li>
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l24 level2 lfo21;tab-stops:list 1.0in'>Was shown for s
      &gt;= 1 in [<a href="references.html#St1997c">St1997c</a>]</li>


  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
<center><tt><font size="10.0pt"><nowiki>|| </nowiki><span class="SpellE"><span class="GramE">uv<u>w</u></span></span> ||_{-1/4, -5/12+} <~ || u ||_{-1/4, 7/12+} || v ||_{-1/4, 7/12+} || w ||_{-1/4, 7/12+}</font></tt></center>
      auto;mso-list:l24 level2 lfo21;tab-stops:list 1.0in'>One has analytic
      ill-<span class=SpellE>posedness</span> for s&lt;1/2 [<a
      href="references.html#CoKeStTaTk-p3">CoKeStTkTa-p3</a>] by a modification
      of the example in [<a href="references.html#KnPoVe1996">KnPoVe1996</a>].</li>
</ul>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l24 level1 lfo21;tab-stops:list .5in'>GWP in <span class=SpellE>H^s</span>


    for s&gt;5/6&nbsp; [<a href="references.html#CoKeStTaTk-p3">CoKeStTkTa-p3</a>]</li>
<span class="GramE">see</span> [<span class="SpellE">Cv</span>-p].
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l24 level2 lfo21;tab-stops:list 1.0in'>Was shown for s
      &gt;= 1 in [<a href="references.html#St1997c">St1997c</a>]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l24 level2 lfo21;tab-stops:list 1.0in'>This result may well
      be improvable by the &quot;damping correction term&quot; method in<span
      class=GramE>&nbsp; [</span><a href="references.html#CoKeStTaTk-p2">CoKeStTkTa-p2</a>].</li>


</ul>
* The 1/2 estimate [[references.html#CoKeStTaTk-p3 CoKeStTkTa-p3]] on '''T'''<nowiki>: if </nowiki><span class="SpellE">u,v,w</span> have mean zero, then
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l24 level1 lfo21;tab-stops:list .5in'><i>Remark</i>: For this equation
    it is convenient to make a &quot;gauge transformation'' to subtract off
    the mean of <span class=GramE>P(</span>u).</li>
</ul>


<div class=MsoNormal align=center style='text-align:center'>
<center><tt><font size="10.0pt"><nowiki>|| (</nowiki><span class="SpellE">uvw</span><span class="GramE">)_</span>x ||_{1/2, -1/2} <~ || u ||_{1/2, 1/2*} || v ||_{1/2, 1/2*} || w ||_{1/2, 1/2*}</font></tt></center>


<hr size=2 width="100%" align=center>
The 1/2 is sharp [[references.html#KnPoVe1996 KnPoVe1996]].


</div>
* ''Remark''<nowiki>: the </nowiki><span class="SpellE">trilinear</span> estimate always needs one more derivative of regularity than the bilinear estimate; this is consistent with the heuristics from the Miura transform from <span class="SpellE">mKdV</span> to <span class="SpellE">KdV</span>.


<p class=MsoNormal align=center style='text-align:center'><a name="gKdV_4_on_R"></a><span
<div class="MsoNormal" style="text-align: center"><center>
class=GramE><b>gKdV_4</b></span><b> on R and R^+</b></p>
----
</center></div>


<p class=MsoNormal>(Thanks to Felipe <span class=SpellE>Linares</span> for help
<center><span class="SpellE">'''Multilinear'''</span>''' Airy estimates'''</center>
with the references here - Ed.)<span style='mso-spacerun:yes'>  </span>A good
survey for the results here is in [Tz-p2].</p>


<ul type=disc>
* We have the <span class="SpellE">quintilinear</span> estimate on '''R'''<nowiki>: [</nowiki>[references.html#CoKeStTaTk-p2 CoKeStTkTa-p2]]
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l22 level1 lfo22;tab-stops:list .5in'>Scaling is <span
    class=SpellE>s_c</span> = 0 (i.e. L^2-critical).</li>


<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
<center><tt><font size="10.0pt">\<span class="SpellE">int</span> u^3 v^2 <span class="SpellE">dx</span> <span class="SpellE">dt</span> <~ || u ||<span class="GramE">_{</span>1/4+,1/2+}^3 || v ||_{-3/4+,1/2+}^2</font></tt></center>
    mso-list:l22 level1 lfo22;tab-stops:list .5in'>LWP in <span class=SpellE>H^s</span>
    for s &gt;= 0 [<a href="references.html#KnPoVe1993">KnPoVe1993</a>]</li>
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l22 level2 lfo22;tab-stops:list 1.0in'>Was shown for
      s&gt;3/2 in [<a href="references.html#GiTs1989">GiTs1989</a>]</li>


  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
* The analogue for this on '''T''' is: [[references.html#CoKeStTaTk-p2 CoKeStTkTa-p2], [references.html#CoKeStTaTk-p3 CoKeStTkTa-p3]]
      auto;mso-list:l22 level2 lfo22;tab-stops:list 1.0in'>The same result s
      &gt;= 0 has also been established for the half-line [<span class=SpellE>CoKe</span>-p],
      assuming boundary data is in H<span class=GramE>^{</span>(s+1)/3} of
      course..</li>
</ul>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l22 level1 lfo22;tab-stops:list .5in'>GWP in <span class=SpellE>H^s</span>
    for s &gt; 3/4 in both the focusing and defocusing cases, though one must
    of course have smaller L^2 mass than the ground state in the focusing case
    [<span class=SpellE>FoLiPo</span>-p].</li>


<ul type=circle>
<center><tt><font size="10.0pt">\<span class="SpellE">int</span> u^3 v^2 <span class="SpellE">dx</span> <span class="SpellE">dt</span> <~ || u ||<span class="GramE">_{</span>1/2,1/2*}^3 || v ||_{-1/2,1/2*}^2</font></tt></center>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l22 level2 lfo22;tab-stops:list 1.0in'>For s &gt;= 1 and
      the defocusing case this is in [<a href="references.html#KnPoVe1993">KnPoVe1993</a>]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l22 level2 lfo22;tab-stops:list 1.0in'>Blowup has recently
      been shown for the <span class=SpellE>focussing</span> case for data
      close to a ground state with negative energy [Me-p].&nbsp;&nbsp; In such
      a case the blowup profile must approach the ground state (modulo <span
      class=SpellE>scalings</span> and translations), see [MtMe-p4], [<a
      href="references.html#MtMe2001">MtMe2001</a>].&nbsp; Also, the blow up
      rate in H^1 must be strictly faster than t<span class=GramE>^{</span>-1/3}
      [MtMe-p4], which is the rate suggested by scaling.</li>


  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
In fact, this estimate also holds for large period, but a loss of lambda<span class="GramE">^{</span>0+}.
      auto;mso-list:l22 level2 lfo22;tab-stops:list 1.0in'>Explicit
      self-similar blow-up solutions have been constructed [<span class=SpellE>BnWe</span>-p]
      but these are not in L^2.</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l22 level2 lfo22;tab-stops:list 1.0in'>GWP for small L^2
      data in either case [<a href="references.html#KnPoVe1993">KnPoVe1993</a>].&nbsp;
      In the <span class=SpellE>focussing</span> case we have GWP whenever the
      L^2 norm is strictly smaller than that of the ground state Q (thanks to
      Weinstein's sharp <span class=SpellE>Gagliardo-Nirenberg</span>


      inequality).&nbsp; It seems like a reasonable (but difficult) conjecture
<div class="MsoNormal" style="text-align: center"><center>
      to have GWP for large L^2 data in the defocusing case.</li>
----
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
</center></div>
      auto;mso-list:l22 level2 lfo22;tab-stops:list 1.0in'>On the half-line GWP
      is known when s &gt;= 1 and the boundary data is in H^{11/12}, assuming
      compatibility and small L^2 norm [<span class=SpellE>CoKe</span>-p]</li>
</ul>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l22 level1 lfo22;tab-stops:list .5in'><span class=SpellE>Solitons</span>
    are H^1-unstable [<a href="references.html#MtMe2001">MtMe2001</a>].&nbsp;&nbsp;


    However, small H^1 perturbations of a <span class=SpellE>soliton</span>
<center>'''The <span class="SpellE">KdV</span> equation'''</center>
    must asymptotically converge weakly to some rescaled <span class=SpellE>soliton</span>
    shape provided that the H^1 norm stays comparable to 1 [<a
    href="references.html#MtMe-p"><span class=SpellE>MtMe</span>-p</a>].</li>
</ul>


<div class=MsoNormal align=center style='text-align:center'>
The <span class="SpellE">KdV</span> equation is


<hr size=2 width="100%" align=center>
<center><span class="SpellE">u_t</span> + <span class="SpellE">u_xxx</span> + u <span class="SpellE">u_x</span> = 0.</center>


</div>
It is completely <span class="SpellE">integrable</span>, and has infinitely many conserved quantities. Indeed, for each non-negative integer k, there is a conserved quantity which is roughly equivalent to the <span class="SpellE">H^k</span> norm of u.


<p class=MsoNormal align=center style='text-align:center'><a name="gKdV_4_on_T"></a><span
The <span class="SpellE">KdV</span> equation has been studied on the [#kdv_on_R line], the [#kdv_on_T circle], and the [#KdV_on_R+ half-line].
class=GramE><b>gKdV_4</b></span><b> on T</b></p>


<ul type=disc>
<div class="MsoNormal" style="text-align: center"><center>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
----
    mso-list:l14 level1 lfo23;tab-stops:list .5in'>Scaling is <span
</center></div>
    class=SpellE>s_c</span> = 0.</li>


<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
<center><span class="SpellE">'''KdV'''</span>''' on R'''</center>
    mso-list:l14 level1 lfo23;tab-stops:list .5in'>LWP in <span class=SpellE>H^s</span>
    for s&gt;=1/2&nbsp; [<a href="references.html#CoKeStTaTk-p3">CoKeStTkTa-p3</a>]</li>
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l14 level2 lfo23;tab-stops:list 1.0in'>Was shown for s
      &gt;= 1 in [<a href="references.html#St1997c">St1997c</a>]</li>


  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
* Scaling is <span class="SpellE">s_c</span> = -3/2.
      auto;mso-list:l14 level2 lfo23;tab-stops:list 1.0in'>Analytic well-<span
* LWP in <span class="SpellE">H^s</span> for s >= -3/4 [<span class="SpellE">CtCoTa</span>-p], using a modified Miura transform and the [#mKdV_on_R <span class="SpellE">mKdV</span> theory]. This is despite the failure of the key bilinear estimate [[references.html#NaTkTs-p NaTkTs2001]]
      class=SpellE>posedness</span> fails for s &lt; 1/2; this is essentially
** For s within a logarithm for s=-3/4 [<span class="SpellE">MurTao</span>-p].
      in [<a href="references.html#KnPoVe1996">KnPoVe1996</a>]</li>
** Was proven for s > -3/4 [[references.html#KnPoVe1996 KnPoVe1996]].
</ul>
** Was proven for s > -5/8 in [[references.html#KnPoVe1993b KnPoVe1993b]].
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
** Was proven for s >= 0 in [[references.html#Bo1993b Bo1993b]].
    mso-list:l14 level1 lfo23;tab-stops:list .5in'>GWP in <span class=SpellE>H^s</span>
** Was proven for s > 3/4 in [[references.html#KnPoVe1993 KnPoVe1993]].
    for s&gt;=1 [<a href="references.html#St1997c">St1997c</a>]</li>
** Was proven for s > 3/2 in [[references.html#BnSm1975 BnSm1975]], [[references.html#Ka1975 Ka1975]], [[references.html#Ka1979 Ka1979]], [[references.html#GiTs1989 GiTs1989]], [[references.html#Bu1980 Bu1980]]<span class="GramE">, ....</span>
** One has local ill-<span class="SpellE"><span class="GramE">posedness</span></span><span class="GramE">(</span>in the sense that the map is not uniformly continuous) for s < -3/4 (in the complex setting) by <span class="SpellE">soliton</span> examples [[references.html#KnPoVe-p <span class="SpellE">KnPoVe</span>-p]].
*** For real <span class="SpellE">KdV</span> this has also been established in [<span class="SpellE">CtCoTa</span>-p], by the Miura transform and the [#mKdV_on_R corresponding result for <span class="SpellE">mKdV</span>].
*** Below -3/4 the solution map was known to not be C^3 [[references.html#Bo1993b Bo1993b]], [[references.html#Bo1997 Bo1997]]; this was refined to C^2 in [[references.html#Tz1999b Tz1999b]].
** When the initial data is a real, rapidly decreasing measure one has a global smooth solution for t > 0 [[referencs.html#Kp1993 Kp1993]]. Without the rapidly decreasing hypothesis one can still construct a global weak solution [[references.html#Ts1989 Ts1989]]
* GWP in <span class="SpellE">H^s</span> for s > -3/4 (if u is real) [[references.html#CoKeStTaTk2003 CoKeStTkTa2003]].
** Was proven for s > -3/10 in [[references.html#CoKeStTkTa2001 CoKeStTkTa2001]]
** Was proven for s>= 0 in [[references.html#Bo1993b Bo1993b]]. Global weak solutions in L^2 were constructed in [[references.html#Ka1983 Ka1983]], [[references.html#KrFa1983 KrFa1983]], and were shown to obey the expected local smoothing estimate. These weak solutions were shown to be unique in [[references.html#Zh1997b Zh1997b]]
** Was proven for s>= 1 in [[references.html#KnPoVe1993 KnPoVe1993]].
** Was proven for s>= 2 in [[references.html#BnSm1975 BnSm1975]], [[references.html#Ka1975 Ka1975]], [[references.html#Ka1979 Ka1979]]<span class="GramE">, ....</span>
** ''Remark''<nowiki>: In the complex setting GWP fails for large data with Fourier support on the half-line [Bona/</nowiki><span class="SpellE">Winther</span>?], [<span class="SpellE">Birnir</span>]<span class="GramE">, ????</span>. This result extends to a wide class of dispersive PDE.
* By use of the inverse scattering transform one can show that smooth solutions eventually resolve into <span class="SpellE">solitons</span>, that two colliding <span class="SpellE">solitons</span> emerge as (slightly phase shifted) <span class="SpellE">solitons</span>, etc.
* <span class="SpellE">Solitons</span> are <span class="SpellE">orbitally</span> H^1 stable [[references.html#Bj1972 Bj1972]]
** In <span class="SpellE">H^s</span>, 0 <= s < 1, the orbital stability of <span class="SpellE">solitons</span> is at most polynomial (the distance to the ground state manifold in <span class="SpellE">H^s</span> norm grows like at most O(t^{1-s+}) in time) [<span class="SpellE">RaySt</span>-p]
** In L^2, orbital stability has been obtained in [[references.html#MeVe2003 MeVe2003]].


<ul type=circle>
The <span class="SpellE">KdV</span> equation can also be generalized to a 2x2 system
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l14 level2 lfo23;tab-stops:list 1.0in'>This is almost
      certainly improvable by the techniques in [<a
      href="references.html#CoKeStTaTk-p3">CoKeStTkTa-p3</a>], probably to s
      &gt; 6/7.&nbsp; There are some low-frequency issues which may require the
      techniques in [<a href="references.html#KeTa-p"><span class=SpellE>KeTa</span>-p</a>].</li>
</ul>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l14 level1 lfo23;tab-stops:list .5in'><i>Remark</i>: For this
    equation it is convenient to make a &quot;gauge transformation'' to
    subtract off the mean of <span class=GramE>P(</span>u).</li>


</ul>
<center><span class="SpellE"><tt><font size="10.0pt">u_t</font></tt></span><tt><font size="10.0pt"> + <span class="SpellE">u_xxx</span> + a_3 <span class="SpellE">v_xxx</span> + u <span class="SpellE">u_x</span> + a_1 v <span class="SpellE">v_x</span> + a_2 (<span class="SpellE">uv</span><span class="GramE">)_</span>x = 0</font></tt><br /><tt><font size="10.0pt">b_1 <span class="SpellE">v_t</span> + <span class="SpellE">v_xxx</span> + b_2 a_3 <span class="SpellE">u_xxx</span> + v <span class="SpellE">v_x</span> + b_2 a_2 u <span class="SpellE">u_x</span> + b_2 a_1 (<span class="SpellE">uv</span>)_x + r <span class="SpellE">v_x</span></font></tt></center>


<div class=MsoNormal align=center style='text-align:center'>
<span class="GramE">where</span> b_1,b_2 are positive constants and a_1,a_2,a_3,r are real constants. This system was introduced in [[references.html#GeaGr1984 GeaGr1984]] to study strongly interacting pairs of weakly nonlinear long waves, and studied further in [[references.html#BnPoSauTm1992 BnPoSauTm1992]]. In [[references.html#AsCoeWgg1996 AsCoeWgg1996]] it was shown that this system was also globally well-posed on L^2. <br /> It is an interesting question as to whether these results can be pushed further to match the <span class="SpellE">KdV</span> theory; the apparent lack of complete <span class="SpellE">integrability</span> in this system (for generic choices of parameters <span class="SpellE">b_i</span>, <span class="SpellE">a_i</span>, <span class="GramE">r</span>) suggests a possible difficulty.


<hr size=2 width="100%" align=center>
<div class="MsoNormal" style="text-align: center"><center>
----
</center></div>


</div>
<center><span class="SpellE">'''KdV'''</span>''' on R^+'''</center>


<p class=MsoNormal align=center style='text-align:center'><a name="gKdV_on_R+"></a><span
* The <span class="SpellE">KdV</span> Cauchy-boundary problem on the half-line is
class=SpellE><span class=GramE><b>gKdV</b></span></span><b> on R^+</b></p>


<ul type=disc>
<center><span class="SpellE">u_t</span> + u<span class="GramE">_{</span>xxx} + <span class="SpellE">u_x</span> + u <span class="SpellE">u_x</span> = 0; u(x,0) = u_0(x); u(0,t) = h(t)</center>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l19 level1 lfo24;tab-stops:list .5in'>The <span class=SpellE>gKdV</span>


    Cauchy-boundary problem on the half-line is</li>
The sign of u<span class="GramE">_{</span>xxx} is important (it makes the influence of the boundary x=0 mostly negligible), the sign of u <span class="SpellE">u_x</span> is not. The drift term <span class="SpellE">u_x</span> appears naturally from the derivation of <span class="SpellE">KdV</span> from fluid mechanics. (On R, this drift term can be eliminated by a <span class="SpellE">Gallilean</span> transform, but this is not available on the half-line).
</ul>


<p class=MsoNormal align=center style='text-align:center'><span class=SpellE>u_t</span>
* Because one is restricted to the half-line, it becomes a little tricky to use the Fourier transform. One approach is to use the Fourier-<span class="SpellE">Laplace</span> transform instead.
+ u<span class=GramE>_{</span>xxx} + <span class=SpellE>u_x</span> + <span
* Some compatibility conditions between u_0 and h are needed. The higher the regularity, the more compatibility conditions are needed. If the initial data u_0 is in <span class="SpellE">H^s</span>, then by scaling heuristics the natural space for h is in H<span class="GramE">^{</span>(s+1)/3}. (Remember that time has dimensions ''length''^3).
class=SpellE>u^k</span> <span class=SpellE>u_x</span> = 0;&nbsp; u(x,0) =
* LWP is known for initial data in <span class="SpellE">H^s</span> and boundary data in H<span class="GramE">^{</span>(s+1)/3} for s >= 0 [<span class="SpellE">CoKe</span>-p], assuming compatibility. The drift term may be omitted because of the time localization.
u_0(x);&nbsp; u(0,t) = h(t)</p>
** For s > 3/4 this was proven in [[references.html#BnSuZh-p <span class="SpellE">BnSuZh</span>-p]] (assuming that there is a drift term).
** Was proven for data in sufficiently weighted H^1 spaces in [[references.html#Fa1983 Fa1983]].
** From the real line theory one might expect to lower this to -3/4, but there appear to be technical difficulties with this.
* GWP is known for initial data in L^2 and boundary data in H<span class="GramE">^{</span>7/12}, assuming compatibility.
** for initial data in H^1 and boundary data in H^{5/6}_loc this was proven in [[references.html#BnSuZh-p <span class="SpellE">BnSuZh</span>-p]]
** Was proven for smooth data in [[references.html#BnWi1983 BnWi1983]]


<p class=MsoNormal style='margin-left:.5in'>The sign of u<span class=GramE>_{</span>xxx}
<div class="MsoNormal" style="text-align: center"><center>
is important (it makes the influence of the boundary x=0 mostly negligible),
----
the sign of u <span class=SpellE>u_x</span> is not.&nbsp; The drift term <span
</center></div>
class=SpellE>u_x</span> is convenient for technical reasons; it is not known
whether it is truly necessary. </p>


<ul type=disc>
<center><span class="SpellE">'''KdV'''</span>''' on T'''</center>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l9 level1 lfo25;tab-stops:list .5in'>LWP is known for initial
    data in <span class=SpellE>H^s</span> and boundary data in H<span
    class=GramE>^{</span>(s+1)/3} when s &gt; 3/4 [<span class=SpellE>CoKn</span>-p].</li>


<ul type=circle>
* Scaling is <span class="SpellE">s_c</span> = -3/2.
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
* C^0 LWP in <span class="SpellE">H^s</span> for s >= -1, assuming u is real [<span class="SpellE">KpTp</span>-p]
      auto;mso-list:l9 level2 lfo25;tab-stops:list 1.0in'>The techniques are
** C^0 LWP in <span class="SpellE">H^s</span> for s >= -5/8 follows (at least in principle) from work on the <span class="SpellE">mKdV</span> equation by [Takaoka and <span class="SpellE">Tsutsumi</span>?]
      based on [<a href="references.html#KnPoVe1993">KnPoVe1993</a>] and a
** Analytic LWP in <span class="SpellE">H^s</span> for s >= -1/2, in the complex case [[references.html#KnPoVe1996 KnPoVe1996]]. In addition to the usual bilinear estimate, one needs a linear estimate to keep the solution in <span class="SpellE">H^s</span> for t>0.
      replacement of the IVBP with a forced IVP.</li>
** Analytic LWP was proven for s >= 0 in [[references.html#Bo1993b Bo1993b]].
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
** Analytic ill <span class="SpellE">posedness</span> at s<-1/2, even in the real case [[references.html#Bo1997 Bo1997]]
      auto;mso-list:l9 level2 lfo25;tab-stops:list 1.0in'>This has been
*** This has been refined to failure of uniform continuity at s<-1/2 [<span class="SpellE">CtCoTa</span>-p]
      improved to s &gt;= <span class=SpellE>s_c</span> = 1/2 - 2/k when k &gt;
** Remark: s=-1/2 is the <span class="SpellE">symplectic</span> regularity, and so the machinery of infinite-dimensional <span class="SpellE">symplectic</span> geometry applies once one has a continuous flow, although there are some technicalities involving approximating <span class="SpellE">KdV</span> by a suitable <span class="SpellE">symplectic</span> finite-dimensional flow. In particular one has <span class="SpellE">symplectic</span> non-squeezing [CoKeStTkTa-p9], [[references.html#Bo1999 Bo1999]].
      4 [<span class=SpellE>CoKe</span>-p].</li>
* C^0 GWP in <span class="SpellE">H^s</span> for s >= -1, in the real case [<span class="SpellE">KpTp</span>-p].
** Analytic GWP in <span class="SpellE">H^s</span> in the real case for s >= -1/2 [[references.html#CoKeStTaTk-p2 CoKeStTkTa-p2]]; see also [[references.html#CoKeStTaTk-p3 CoKeStTkTa-p3]].
** A short proof for the s > -3/10 case is in [[references.html#CoKeStTaTk-p2a CoKeStTkTa-p2a]]
** Was proven for s >= 0 in [[references.html#Bo1993b Bo1993b]].
** GWP for real initial data which are measures of small norm [[references.html#Bo1997 Bo1997]] <span class="GramE">The</span> small norm restriction is presumably technical.
*** ''Remark''<nowiki>: measures have the same scaling as H</nowiki><span class="GramE">^{</span>-1/2}, but neither space includes the other. (Measures are in H<span class="GramE">^{</span>-1/2-\eps} though).
** One has GWP for real random data whose Fourier coefficients decay like 1/|k| (times a Gaussian random variable) [[references.html#Bo1995c Bo1995c]]. Indeed one has an invariant measure.
** <span class="SpellE">Solitons</span> are asymptotically H^1 stable [MtMe-p3], [<span class="SpellE">MtMe</span>-p].Indeed, the solution decouples into a finite sum of <span class="SpellE">solitons</span> plus dispersive radiation [[references.html#EckShr1988 EckShr1988]]


  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
<div class="MsoNormal" style="text-align: center"><center>
      auto;mso-list:l9 level2 lfo25;tab-stops:list 1.0in'>For <a
----
      href="#KdV_on_R+"><span class=SpellE>KdV</span></a>, <a href="#mKdV_on_R"><span
</center></div>
      class=SpellE>mKdV</span></a>, <a href="#gKdV_3_on_R">gKdV-3</a> , and <a
      href="#gKdV_4_on_R">gKdV-4</a> see the corresponding sections on this
      page.</li>
</ul>
</ul>


<div class=MsoNormal align=center style='text-align:center'>
<center>'''The modified <span class="SpellE">KdV</span> equation'''</center>


<hr size=2 width="100%" align=center>
The (<span class="SpellE">defocussing</span>) <span class="SpellE">mKdV</span> equation is


</div>
<center><span class="SpellE">u_t</span> + <span class="SpellE">u_xxx</span> = 6 u^2 <span class="SpellE">u_x</span>.</center>


<p align=center style='text-align:center'><a name="Schrodinger_Airy"></a><b>Nonlinear
It is completely <span class="SpellE">integrable</span>, and has infinitely many conserved quantities. Indeed, for each non-negative integer k, there is a conserved quantity which is roughly equivalent to the <span class="SpellE">H^k</span> norm of u. This equation has been studied on the [#mKdV_on_R line], [#mKdV_on_T circle], and [#gKdV_on_R+ half-line].
<span class=SpellE>Schrodinger</span>-Airy equation<o:p></o:p></b></p>


<p>The equation</p>
The ''Miura transformation'' v = <span class="SpellE">u_x</span> + u^2 transforms a solution of <span class="SpellE">defocussing</span> <span class="SpellE">mKdV</span> to a solution of [#kdv <span class="SpellE">KdV</span>]


<p align=center style='text-align:center'><span class=SpellE>u_t</span> + <span
<center><span class="SpellE">v_t</span> + <span class="SpellE">v_xxx</span> = 6 v <span class="SpellE">v_x</span>.</center>
class=SpellE>i</span> c <span class=SpellE>u_xx</span> + <span class=SpellE>u_xxx</span>


= <span class=SpellE>i</span> gamma |u|^2 u + delta |u|^2 <span class=SpellE>u_x</span>
Thus one expects the LWP and GWP theory for <span class="SpellE">mKdV</span> to be one derivative higher than that for <span class="SpellE">KdV</span>.
+ epsilon u^2 <span class=SpellE><u>u</u>_x</span></p>


<p><span class=GramE>on</span> R is a combination of the <a
The <span class="SpellE">focussing</span> <span class="SpellE">mKdV</span>
href="schrodinger.html#Cubic_NLS_on_R">cubic NLS equation</a> , the <a
href="schrodinger.html#dnls-3_on_R">derivative cubic NLS equation</a>, <a
href="#mKdV_on_R">complex <span class=SpellE>mKdV</span></a>, and a cubic
nonlinear Airy equation.<span style='mso-spacerun:yes'>  </span>This equation
is a general model for <span class=SpellE>propogation</span> of pulses in an
optical fiber [<a href="references.html#Kod1985">Kod1985</a>], [<a
href="references.html#HasKod1987">HasKod1987</a>]</p>


<p style='margin-left:.5in;text-indent:-.25in;mso-list:l25 level1 lfo26;
<center><span class="SpellE">u_t</span> + <span class="SpellE">u_xxx</span> = - 6 u^2 <span class="SpellE">u_x</span></center>
tab-stops:list .5in'><![if !supportLists]><span style='font-family:Symbol;
mso-fareast-font-family:Symbol;mso-bidi-font-family:Symbol'><span
style='mso-list:Ignore'>·<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
</span></span></span><![endif]>When c=delta=epsilon = 0, scaling is s=-1.<span
style='mso-spacerun:yes'> </span>When c=gamma=0, scaling is &#8211;1/2.</p>


<p style='margin-left:.5in;text-indent:-.25in;mso-list:l25 level1 lfo26;
<span class="GramE">is</span> very similar, except that the Miura transform is now v = <span class="SpellE">u_x</span> + <span class="SpellE">i</span> u^2. This transforms <span class="SpellE">focussing</span> <span class="SpellE">mKdV</span> to ''complex-valued'' <span class="SpellE">KdV</span>, which is a slightly less tractable equation. (However, the transformed solution v is still real in the highest order term, so in principle the real-valued theory carries over to this case).
tab-stops:list .5in'><![if !supportLists]><span style='font-family:Symbol;
mso-fareast-font-family:Symbol;mso-bidi-font-family:Symbol'><span
style='mso-list:Ignore'>·<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
</span></span></span><![endif]>LWP is known when s &gt;= ¼ [<a
href="references.html#St1997d">St1997d</a>]</p>


<p style='margin-left:1.0in;text-indent:-.25in;mso-list:l25 level2 lfo26;
The Miura transformation can be generalized. If v and w solve the system
tab-stops:list 1.0in'><![if !supportLists]><span style='font-family:"Courier New";
mso-fareast-font-family:"Courier New"'><span style='mso-list:Ignore'>o<span
style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]>For
s &gt; ¾ this is in [<a href="references.html#Lau1997">Lau1997</a>], [<a
href="references.html#Lau2001">Lau2001</a>]</p>


<p style='margin-left:1.0in;text-indent:-.25in;mso-list:l25 level2 lfo26;
<center><span class="SpellE">v_t</span> + <span class="SpellE">v_xxx</span> = 6(v^2 + w) <span class="SpellE">v_x</span><br /><span class="SpellE">w_t</span> + <span class="SpellE">w_xxx</span> = 6(v^2 + w) <span class="SpellE">w_x</span></center>
tab-stops:list 1.0in'><![if !supportLists]><span style='font-family:"Courier New";
mso-fareast-font-family:"Courier New"'><span style='mso-list:Ignore'>o<span
style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]>The
s&gt;=1/4 result is also known when c is a time-dependent function [Cv2002],
[CvLi2003]</p>


<p style='margin-left:1.0in;text-indent:-.25in;mso-list:l25 level2 lfo26;
Then u = v^2 + <span class="SpellE">v_x</span> + w is a solution of <span class="SpellE">KdV</span>. In particular, if a and b are constants and v solves
tab-stops:list 1.0in'><![if !supportLists]><span style='font-family:"Courier New";
mso-fareast-font-family:"Courier New"'><span style='mso-list:Ignore'>o<span
style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]>For
s &lt; -1/4 and delta or epsilon non-zero, the solution map is not C^3 [<span
class=SpellE>CvLi</span>-p]</p>


<p style='margin-left:1.0in;text-indent:-.25in;mso-list:l25 level2 lfo26;
<center><span class="SpellE">v_t</span> + <span class="SpellE">v_xxx</span> = 6(a^2 v^2 + <span class="SpellE"><span class="GramE">bv</span></span>) <span class="SpellE">v_x</span></center>
tab-stops:list 1.0in'><![if !supportLists]><span style='font-family:"Courier New";
mso-fareast-font-family:"Courier New"'><span style='mso-list:Ignore'>o<span
style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]>When
delta = epsilon = 0 LWP is known for s &gt; -1/4 [<a
href="references.html#Cv2004">Cv2004</a>]</p>


<p style='margin-left:1.5in;text-indent:-.25in;mso-list:l25 level3 lfo26;
<span class="GramE">then</span> u = a^2 v^2 + <span class="SpellE">av_x</span> + <span class="SpellE">bv</span> solves <span class="SpellE">KdV</span> (this is the ''Gardener transform'').
tab-stops:list 1.5in'><![if !supportLists]><span style='font-family:Wingdings;
mso-fareast-font-family:Wingdings;mso-bidi-font-family:Wingdings'><span
style='mso-list:Ignore'>§<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
</span></span></span><![endif]>For s &lt; -1/4 the solution map is not C^3 [<span
class=SpellE>CvLi</span>-p]</p>


<div class=MsoNormal align=center style='text-align:center'>
<div class="MsoNormal" style="text-align: center"><center>
----
</center></div>


<hr size=2 width="100%" align=center>
<center><span class="SpellE"><span class="GramE">'''mKdV'''</span></span>''' on R and R^+'''</center>


</div>
* Scaling is <span class="SpellE">s_c</span> = -1/2.
* LWP in <span class="SpellE">H^s</span> for s >= 1/4 [[references.html#KnPoVe1993 KnPoVe1993]]
** Was shown for s>3/2 in [[references.html#GiTs1989 GiTs1989]]
** This is sharp in the <span class="SpellE">focussing</span> case [[references.html#KnPoVe-p <span class="SpellE">KnPoVe</span>-p]], in the sense that the solution map is no longer uniformly continuous for s < 1/4.
*** This has been extended to the <span class="SpellE">defocussing</span> case in [<span class="SpellE">CtCoTa</span>-p], by a high-frequency approximation of <span class="SpellE">mKdV</span> by [schrodinger.html#Cubic NLS on R NLS]. (This high frequency approximation has also been utilized in [[references.html#Sch1998 Sch1998]]).
*** Below 1/4 the solution map was known to not be C^3 in [[references.html#Bo1993b Bo1993b]], [[references.html#Bo1997 Bo1997]].
** The same result has also been established for the half-line [<span class="SpellE">CoKe</span>-p], assuming boundary data is in H<span class="GramE">^{</span>(s+1)/3} of course.
** Global weak solutions in L^2 were constructed in [[references.html#Ka1983 Ka1983]]. Thus in L^2 one has global existence but no uniform continuity.
** Uniqueness is also known when the initial data lies in the weighted space <x>^{3/8} u_0 in L^2 [[references.html#GiTs1989 GiTs1989]]
** LWP has also been demonstrated when <xi>^s hat(u_0) lies in L^{r’} for 4/3 < r <= 2 and s >= ½ - 1/2r [Gr-p4]
* GWP in <span class="SpellE">H^s</span> for s > 1/4 [[references.html#CoKeStTaTk-p2 CoKeStTkTa-p2]], via the <span class="SpellE">KdV</span> theory and the Miura transform, for both the <span class="SpellE">focussing</span> and <span class="SpellE">defocussing</span> cases.
** Was proven for s>3/5 in [[references.html#FoLiPo1999 FoLiPo1999]]
** Is implicit for s >= 1 from [[references.html#KnPoVe1993 KnPoVe1993]]
** On the half-line GWP is known when s >= 1 and the boundary data is in H^{11/12}, assuming compatibility and small L^2 norm [<span class="SpellE">CoKe</span>-p]
** GWP for smooth data can also be achieved from inverse scattering methods [<span class="SpellE">BdmFsShp</span>-p]; the same approach also works on an interval [<span class="SpellE">BdmShp</span>-p].
** <span class="SpellE">Solitions</span> are asymptotically H^1 stable [MtMe-p3], [<span class="SpellE">MtMe</span>-p]


<p class=MsoNormal align=center style='text-align:center'><a name=gKdV></a><b>Miscellaneous
<div class="MsoNormal" style="text-align: center"><center>
----
</center></div>


<span class=SpellE>gKdV</span> results</b></p>
<center><span class="SpellE"><span class="GramE">'''mKdV'''</span></span>''' on T'''</center>


<p class=MsoNormal>[Thanks to <span class=SpellE>Nikolaos</span> <span
* Scaling is <span class="SpellE">s_c</span> = -1/2.
class=SpellE>Tzirakis</span> for some corrections - Ed.] </p>
* C^0 LWP in L^2 in the defocusing case [KpTp-p2]
** C^0 LWP in <span class="SpellE">H^s</span> for s > 3/8 [Takaoka and <span class="SpellE">Tsutsumi</span>?]Note one has to gauge away a nonlinear resonance term before one can apply iteration methods.
** Analytic LWP in <span class="SpellE">H^s</span> for s >= 1/2, in both focusing and defocusing cases [[references.html#KnPoVe1993 KnPoVe1993]], [[references.html#Bo1993b Bo1993b]].
** This is sharp in the sense of analytic well-<span class="SpellE">posedness</span> [[references.html#KnPoVe1996 KnPoVe1996]] or uniform well-<span class="SpellE">posedness</span> [<span class="SpellE">CtCoTa</span>-p]
* C^0 GWP in L^2 in the defocusing case [KpTp-p2]
** Analytic GWP in <span class="SpellE">H^s</span> for s >= 1/2<span class="GramE"> [</span>[references.html#CoKeStTaTk-p2 CoKeStTkTa-p2]], via the <span class="SpellE">KdV</span> theory and the Miura transform, for both the <span class="SpellE">focussing</span> and <span class="SpellE">defocussing</span> cases.
** Was proven for s >= 1 in [[references.html#KnPoVe1993 KnPoVe1993]], [[references.html#Bo1993b Bo1993b]].
** One has GWP for random data whose Fourier coefficients decay like 1/|k| (times a Gaussian random variable) [[references.html#Bo1995c Bo1995c]]. Indeed one has an invariant measure. Note that such data barely fails to be in H<span class="GramE">^{</span>1/2}, however one can modify the local well-<span class="SpellE">posedness</span> theory to go below H^{1/2} provided that one has a decay like O(|k|^{-1+\eps}) on the Fourier coefficients (which is indeed the case almost surely).


<ul type=disc>
<div class="MsoNormal" style="text-align: center"><center>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
----
    mso-list:l2 level1 lfo27;tab-stops:list .5in'>On R with k &gt; 4, <span
</center></div>
    class=SpellE>gKdV</span>-k is LWP down to scaling: s &gt;= <span
    class=SpellE>s_c</span> = 1/2 - 2/k [<a href="references.html#KnPoVe1993">KnPoVe1993</a>]</li>


<ul type=circle>
<center><span class="GramE">'''gKdV_3'''</span>''' on R and R^+'''</center>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l2 level2 lfo27;tab-stops:list 1.0in'>Was shown for
      s&gt;3/2 in [<a href="references.html#GiTs1989">GiTs1989</a>]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l2 level2 lfo27;tab-stops:list 1.0in'>One has ill-<span
      class=SpellE>posedness</span> in the supercritical regime [<a
      href="references.html#BirKnPoSvVe1996">BirKnPoSvVe1996</a>]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l2 level2 lfo27;tab-stops:list 1.0in'>For small data one
      has scattering [<a href="references.html#KnPoVe1993c">KnPoVe1993c</a>].<span
      style='mso-spacerun:yes'</span>Note that one cannot have scattering in
      L^2 except in the critical case k=4 because one can scale <span
      class=SpellE>solitons</span> to be arbitrarily small in the non-critical
      cases.</li>


  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
* Scaling is <span class="SpellE">s_c</span> = -1/6.
      auto;mso-list:l2 level2 lfo27;tab-stops:list 1.0in'><span class=SpellE>Solitons</span>
* LWP in <span class="SpellE">H^s</span> for s > -1/6 [Gr-p3]
      are H^1-unstable [<a href="references.html#BnSouSr1987">BnSouSr1987</a>]</li>
** Was shown for s>=1/12 [[references.html#KnPoVe1993 KnPoVe1993]]
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
** Was shown for s>3/2 in [[references.html#GiTs1989 GiTs1989]]
      auto;mso-list:l2 level2 lfo27;tab-stops:list 1.0in'>If one considers an
** The result s >= 1/12 has also been established for the half-line [<span class="SpellE">CoKe</span>-p], assuming boundary data is in H<span class="GramE">^{</span>(s+1)/3} of course..
      arbitrary smooth non-linearity (not necessarily a power) then one has LWP
* GWP in <span class="SpellE">H^s</span> for s >= 0 [Gr-p3]
      for small data in <span class=SpellE>H^s</span>, s &gt; 1/2 [<a
** For s>=1 this is in [[references.html#KnPoVe1993 KnPoVe1993]]
      href="references.html#St1995">St1995</a>]</li>
** Presumably one can use either the Fourier truncation method or the "I-method" to go below L^2. Even though the equation is not completely <span class="SpellE">integrable</span>, the one-dimensional nature of the equation suggests that "correction term" techniques will also be quite effective.
** On the half-line GWP is known when s >= 1 and the boundary data is in H^{5/4}, assuming compatibility and small L^2 norm [<span class="SpellE">CoKe</span>-p]
* <span class="SpellE">Solitons</span> are H^1-stable [[references.html#CaLo1982 CaLo1982]], [[references.html#Ws1986 Ws1986]], [[references.html#BnSouSr1987 BnSouSr1987]] and asymptotically H^1 stable [MtMe-p3], [<span class="SpellE">MtMe</span>-p]


</ul>
<div class="MsoNormal" style="text-align: center"><center>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
----
    mso-list:l2 level1 lfo27;tab-stops:list .5in'>On R with any k, <span
</center></div>
    class=SpellE>gKdV</span>-k is GWP in <span class=SpellE>H^s</span> for s
    &gt;= 1 [<a href="references.html#KnPoVe1993">KnPoVe1993</a>], though for
    k &gt;= 4 one needs the L^2 norm to be small; global weak solutions were
    constructed much earlier, with the same smallness assumption when k &gt;=
    4.&nbsp; This should be improvable below H^1 for all k.</li>


<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
<center><span class="GramE">'''gKdV_3'''</span>''' on T'''</center>
    mso-list:l2 level1 lfo27;tab-stops:list .5in'>On R with any k, <span
    class=SpellE>gKdV</span>-k has the <span class=SpellE>H^s</span> norm
    growing like t^{(s-1)+} in time for any integer s &gt;= 1 [<a
    href="references.html#St1997b">St1997b</a>]</li>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l2 level1 lfo27;tab-stops:list .5in'>On R with any non-linearity,
    a non-zero solution to <span class=SpellE>gKdV</span> cannot be supported
    on the half-line R^+ (or R^-) for two different times [<a
    href="references.html#KnPoVe-p3">KnPoVe-p3</a>], [KnPoVe-p4].</li>


<ul type=circle>
* Scaling is <span class="SpellE">s_c</span> = -1/6.
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
* LWP in <span class="SpellE">H^s</span> for s>=1/2 [[references.html#CoKeStTaTk-p3 CoKeStTkTa-p3]]
      auto;mso-list:l2 level2 lfo27;tab-stops:list 1.0in'>In the completely <span
** Was shown for s >= 1 in [[references.html#St1997c St1997c]]
      class=SpellE>integrable</span> cases k=1,2 this is in [<a
** One has analytic ill-<span class="SpellE">posedness</span> for s<1/2 [[references.html#CoKeStTaTk-p3 CoKeStTkTa-p3]] by a modification of the example in [[references.html#KnPoVe1996 KnPoVe1996]].
      href="references.html#Zg1992">Zg1992</a>]</li>
* GWP in <span class="SpellE">H^s</span> for s>5/6 [[references.html#CoKeStTaTk-p3 CoKeStTkTa-p3]]
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
** Was shown for s >= 1 in [[references.html#St1997c St1997c]]
      auto;mso-list:l2 level2 lfo27;tab-stops:list 1.0in'>Also, a non-zero
** This result may well be improvable by the "damping correction term" method in<span class="GramE"> [</span>[references.html#CoKeStTaTk-p2 CoKeStTkTa-p2]].
      solution to <span class=SpellE>gKdV</span> cannot vanish on a rectangle
* ''Remark''<nowiki>: For this equation it is convenient to make a "gauge transformation'' to subtract off the mean of </nowiki><span class="GramE">P(</span>u).
      in <span class=SpellE>spacetime</span> [<a
      href="references.html#SauSc1987">SauSc1987</a>]; see also [<a
      href="references.html#Bo1997b">Bo1997b</a>].</li>


  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
<div class="MsoNormal" style="text-align: center"><center>
      auto;mso-list:l2 level2 lfo27;tab-stops:list 1.0in'>Extensions to higher
----
      order <span class=SpellE>gKdV</span> type equations are in [<a
</center></div>
      href="references.html#Bo1997b">Bo1997b</a>], [KnPoVe-p5].</li>
</ul>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l2 level1 lfo27;tab-stops:list .5in'>On R with non-integer k, one
    has decay of <span class=GramE>O(</span>t^{-1/3}) in L^\<span
    class=SpellE>infty</span> for small decaying data if k &gt; (19 - <span
    class=SpellE>sqrt</span>(57))/4 ~ 2.8625... [<a
    href="references.html#CtWs1991">CtWs1991</a>]</li>


<ul type=circle>
<center><span class="GramE">'''gKdV_4'''</span>''' on R and R^+'''</center>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l2 level2 lfo27;tab-stops:list 1.0in'>A similar result for
      k &gt; (5+<span class=GramE>sqrt(</span>73))/4 ~ 3.39... <span
      class=GramE>was</span> obtained in [<a href="references.html#PoVe1990">PoVe1990</a>].</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l2 level2 lfo27;tab-stops:list 1.0in'>When k=2 solutions
      decay like O(t^{-1/3}), and when k=1 solutions decay generically like
      O(t^{-2/3}) but like O( (t/log t)^{-2/3}) for exceptional data [<a
      href="references.html#AbSe1977">AbSe1977</a>]</li>


</ul>
(Thanks to Felipe <span class="SpellE">Linares</span> for help with the references here - Ed.)A good survey for the results here is in [Tz-p2].
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l2 level1 lfo27;tab-stops:list .5in'>In the L^2 <span
    class=SpellE>subcritical</span> case 0 &lt; k &lt; 4, <span class=SpellE>multisoliton</span>
    solutions are asymptotically H^1-stable [<span class=SpellE>MtMeTsa</span>-p]</li>


<ul type=circle>
* Scaling is <span class="SpellE">s_c</span> = 0 (i.e. L^2-critical).
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
* LWP in <span class="SpellE">H^s</span> for s >= 0 [[references.html#KnPoVe1993 KnPoVe1993]]
      auto;mso-list:l2 level2 lfo27;tab-stops:list 1.0in'>For a single <span
** Was shown for s>3/2 in [[references.html#GiTs1989 GiTs1989]]
      class=SpellE>soliton</span> this is in [MtMe-p3], [<span class=SpellE>MtMe</span>-p],
** The same result s >= 0 has also been established for the half-line [<span class="SpellE">CoKe</span>-p], assuming boundary data is in H<span class="GramE">^{</span>(s+1)/3} of course..
      [<a href="references.html#Miz2001">Miz2001</a>]; earlier work is in [<a
* GWP in <span class="SpellE">H^s</span> for s > 3/4 in both the focusing and defocusing cases, though one must of course have smaller L^2 mass than the ground state in the focusing case [<span class="SpellE">FoLiPo</span>-p].
      href="references.html#Bj1972">Bj1972</a>], [<a
** For s >= 1 and the defocusing case this is in [[references.html#KnPoVe1993 KnPoVe1993]]
      href="references.html#Bn1975">Bn1975</a>], [<a
** Blowup has recently been shown for the <span class="SpellE">focussing</span> case for data close to a ground state with negative energy [Me-p]. In such a case the blowup profile must approach the ground state (modulo <span class="SpellE">scalings</span> and translations), see [MtMe-p4], [[references.html#MtMe2001 MtMe2001]]. Also, the blow up rate in H^1 must be strictly faster than t<span class="GramE">^{</span>-1/3} [MtMe-p4], which is the rate suggested by scaling.
      href="references.html#Ws1986">Ws1986</a>], [<a
** Explicit self-similar blow-up solutions have been constructed [<span class="SpellE">BnWe</span>-p] but these are not in L^2.
      href="references.html#PgWs1994">PgWs1994</a>]</li>
** GWP for small L^2 data in either case [[references.html#KnPoVe1993 KnPoVe1993]]. In the <span class="SpellE">focussing</span> case we have GWP whenever the L^2 norm is strictly smaller than that of the ground state Q (thanks to Weinstein's sharp <span class="SpellE">Gagliardo-Nirenberg</span> inequality). It seems like a reasonable (but difficult) conjecture to have GWP for large L^2 data in the defocusing case.
** On the half-line GWP is known when s >= 1 and the boundary data is in H^{11/12}, assuming compatibility and small L^2 norm [<span class="SpellE">CoKe</span>-p]
* <span class="SpellE">Solitons</span> are H^1-unstable [[references.html#MtMe2001 MtMe2001]]. However, small H^1 perturbations of a <span class="SpellE">soliton</span> must asymptotically converge weakly to some rescaled <span class="SpellE">soliton</span> shape provided that the H^1 norm stays comparable to 1 [[references.html#MtMe-p <span class="SpellE">MtMe</span>-p]].


</ul>
<div class="MsoNormal" style="text-align: center"><center>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
----
    mso-list:l2 level1 lfo27;tab-stops:list .5in'>A dissipative version of <span
</center></div>
    class=SpellE>gKdV</span>-k was analyzed in [<a
    href="references.html#MlRi2001">MlRi2001</a>]</li>
</ul>


<ul type=disc>
<center><span class="GramE">'''gKdV_4'''</span>''' on T'''</center>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l20 level1 lfo28;tab-stops:list .5in'>On T with any k, <span
    class=SpellE>gKdV</span>-k has the <span class=SpellE>H^s</span> norm
    growing like t^{2(s-1)+} in time for any integer s &gt;= 1 [<a
    href="references.html#St1997b">St1997b</a>]</li>


<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
* Scaling is <span class="SpellE">s_c</span> = 0.
    mso-list:l20 level1 lfo28;tab-stops:list .5in'>On T with k &gt;= 3, <span
* LWP in <span class="SpellE">H^s</span> for s>=1/2 [[references.html#CoKeStTaTk-p3 CoKeStTkTa-p3]]
    class=SpellE>gKdV</span>-k is LWP for s &gt;= 1/2 [<a
** Was shown for s >= 1 in [[references.html#St1997c St1997c]]
    href="references.html#CoKeStTaTk-p3">CoKeStTkTa-p3</a>]</li>
** Analytic well-<span class="SpellE">posedness</span> fails for s < 1/2; this is essentially in [[references.html#KnPoVe1996 KnPoVe1996]]
<ul type=circle>
* GWP in <span class="SpellE">H^s</span> for s>=1 [[references.html#St1997c St1997c]]
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
** This is almost certainly improvable by the techniques in [[references.html#CoKeStTaTk-p3 CoKeStTkTa-p3]], probably to s > 6/7. There are some low-frequency issues which may require the techniques in [[references.html#KeTa-p <span class="SpellE">KeTa</span>-p]].
      auto;mso-list:l20 level2 lfo28;tab-stops:list 1.0in'>Was shown for s
* ''Remark''<nowiki>: For this equation it is convenient to make a "gauge transformation'' to subtract off the mean of </nowiki><span class="GramE">P(</span>u).
      &gt;= 1 in [<a href="references.html#St1997c">St1997c</a>]</li>


  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
<div class="MsoNormal" style="text-align: center"><center>
      auto;mso-list:l20 level2 lfo28;tab-stops:list 1.0in'>Analytic well-<span
----
      class=SpellE>posedness</span> fails for s &lt; 1/2 [<a
</center></div>
      href="references.html#CoKeStTaTk-p3">CoKeStTkTa-p3</a>], [<a
      href="references.html#KnPoVe1996">KnPoVe1996</a>]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l20 level2 lfo28;tab-stops:list 1.0in'>For arbitrary smooth
      non-<span class=SpellE>linearities</span>, weak H^1 solutions were
      constructed in [<a href="references.html#Bo1993b">Bo1993</a>].</li>


</ul>
<center><span class="SpellE"><span class="GramE">'''gKdV'''</span></span>''' on R^+'''</center>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l20 level1 lfo28;tab-stops:list .5in'>On T with k &gt;= 3, <span
    class=SpellE>gKdV</span>-k is GWP for s &gt;= 1 except in the <span
    class=SpellE>focussing</span> case [<a href="references.html#St1997c">St1997c</a>]</li>
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l20 level2 lfo28;tab-stops:list 1.0in'>The estimates in [<a
      href="references.html#CoKeStTaTk-p3">CoKeStTkTa-p3</a>] suggest that this
      is improvable to 13/14 - 2/7k, but this has only been proven in the
      sub-critical case k=3 [<a href="references.html#CoKeStTaTk-p3">CoKeStTkTa-p3</a>].&nbsp;


      In the critical and super-critical cases there are some low-frequency
* The <span class="SpellE">gKdV</span> Cauchy-boundary problem on the half-line is
      issues which may require the techniques in [<a
      href="references.html#KeTa-p"><span class=SpellE>KeTa</span>-p</a>].</li>
</ul>
</ul>


<div class=MsoNormal align=center style='text-align:center'>
<center><span class="SpellE">u_t</span> + u<span class="GramE">_{</span>xxx} + <span class="SpellE">u_x</span> + <span class="SpellE">u^k</span> <span class="SpellE">u_x</span> = 0; u(x,0) = u_0(x); u(0,t) = h(t)</center>


<hr size=2 width="100%" align=center>
The sign of u<span class="GramE">_{</span>xxx} is important (it makes the influence of the boundary x=0 mostly negligible), the sign of u <span class="SpellE">u_x</span> is not. The drift term <span class="SpellE">u_x</span> is convenient for technical reasons; it is not known whether it is truly necessary.


</div>
* LWP is known for initial data in <span class="SpellE">H^s</span> and boundary data in H<span class="GramE">^{</span>(s+1)/3} when s > 3/4 [<span class="SpellE">CoKn</span>-p].
** The techniques are based on [[references.html#KnPoVe1993 KnPoVe1993]] and a replacement of the IVBP with a forced IVP.
** This has been improved to s >= <span class="SpellE">s_c</span> = 1/2 - 2/k when k > 4 [<span class="SpellE">CoKe</span>-p].
** For [#KdV_on_R+ <span class="SpellE">KdV</span>], [#mKdV_on_R <span class="SpellE">mKdV</span>], [#gKdV_3_on_R gKdV-3] , and [#gKdV_4_on_R gKdV-4] see the corresponding sections on this page.


<p class=MsoNormal align=center style='text-align:center'><a name=hierarchy></a><b>The
<div class="MsoNormal" style="text-align: center"><center>
----
</center></div>


<span class=SpellE>KdV</span> Hierarchy</b></p>
<center>'''Nonlinear <span class="SpellE">Schrodinger</span>-Airy equation'''</center>


<p>The <span class=SpellE>KdV</span> equation </p>
The equation


<p align=center style='text-align:center'><span class=SpellE>V_t</span> + <span
<center><span class="SpellE">u_t</span> + <span class="SpellE">i</span> c <span class="SpellE">u_xx</span> + <span class="SpellE">u_xxx</span> = <span class="SpellE">i</span> gamma |u|^2 u + delta |u|^2 <span class="SpellE">u_x</span> + epsilon u^2 <span class="SpellE"><u>u</u>_x</span></center>
class=SpellE>V_xxx</span> = 6 <span class=SpellE>V_x</span></p>


<p><span class=GramE>can</span> be rewritten in the Lax Pair form </p>
<span class="GramE">on</span> R is a combination of the [schrodinger.html#Cubic_NLS_on_R cubic NLS equation] , the [schrodinger.html#dnls-3_on_R derivative cubic NLS equation], [#mKdV_on_R complex <span class="SpellE">mKdV</span>], and a cubic nonlinear Airy equation.This equation is a general model for <span class="SpellE">propogation</span> of pulses in an optical fiber [[references.html#Kod1985 Kod1985]], [[references.html#HasKod1987 HasKod1987]]


<p align=center style='text-align:center'><span class=SpellE>L_t</span> = [L,
<span style="mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol"><font face="Symbol"><span style="mso-list: Ignore">·</span></font></span>When c=delta=epsilon = 0, scaling is s=-1.When c=gamma=0, scaling is –1/2.
P]</p>


<p><span class=GramE>where</span> L is the second-order operator </p>
<span style="mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol"><font face="Symbol"><span style="mso-list: Ignore">·</span></font></span>LWP is known when s >= ¼ [[references.html#St1997d St1997d]]


<p align=center style='text-align:center'>L = -D^2 + V</p>
<span style="mso-fareast-font-family: &quot;Courier New&quot;"><font face="&quot;Courier New&quot;"><span style="mso-list: Ignore">o</span></font></span>For s > ¾ this is in [[references.html#Lau1997 Lau1997]], [[references.html#Lau2001 Lau2001]]


<p>(D = d/<span class=SpellE>dx</span>) and P is the third-order <span
<span style="mso-fareast-font-family: &quot;Courier New&quot;"><font face="&quot;Courier New&quot;"><span style="mso-list: Ignore">o</span></font></span>The s>=1/4 result is also known when c is a time-dependent function [Cv2002], [CvLi2003]
class=SpellE>antiselfadjoint</span> operator </p>


<p align=center style='text-align:center'>P = 4D^3 + 3(DV + VD).</p>
<span style="mso-fareast-font-family: &quot;Courier New&quot;"><font face="&quot;Courier New&quot;"><span style="mso-list: Ignore">o</span></font></span>For s < -1/4 and delta or epsilon non-zero, the solution map is not C^3 [<span class="SpellE">CvLi</span>-p]


<p>(<span class=GramE>note</span> that P consists of the <span class=SpellE>zeroth</span>
<span style="mso-fareast-font-family: &quot;Courier New&quot;"><font face="&quot;Courier New&quot;"><span style="mso-list: Ignore">o</span></font></span>When delta = epsilon = 0 LWP is known for s > -1/4 [[references.html#Cv2004 Cv2004]]


order and higher terms of the formal power series expansion of 4i L^{3/2}). </p>
<span style="mso-fareast-font-family: Wingdings; mso-bidi-font-family: Wingdings"><font face="Wingdings"><span style="mso-list: Ignore">§</span></font></span>For s < -1/4 the solution map is not C^3 [<span class="SpellE">CvLi</span>-p]


<p>One can replace P with other fractional powers of L.&nbsp; For instance, the
<div class="MsoNormal" style="text-align: center"><center>
<span class=SpellE>zeroth</span> order and higher terms of 4i L<span
----
class=GramE>^{</span>5/2} are </p>
</center></div>


<p align=center style='text-align:center'>P = 4D^5 + 5(D^3 V + V D^3) - 5/4 (D <span
<center>'''Miscellaneous <span class="SpellE">gKdV</span> results'''</center>
class=SpellE>V_xx</span> + <span class=SpellE>V_xx</span> D) + 15/4 (D V^2 +
V^2 D)</p>


<p><span class=GramE>and</span> the Lax pair equation becomes </p>
[Thanks to <span class="SpellE">Nikolaos</span> <span class="SpellE">Tzirakis</span> for some corrections - Ed.]


<p class=MsoNormal align=center style='text-align:center'><span class=SpellE>V_t</span>
* On R with k > 4, <span class="SpellE">gKdV</span>-k is LWP down to scaling: s >= <span class="SpellE">s_c</span> = 1/2 - 2/k [[references.html#KnPoVe1993 KnPoVe1993]]
+ <span class=SpellE>u_xxxxx</span> = (5 V_x^2 + 10 V <span class=SpellE>V_xx</span>
** Was shown for s>3/2 in [[references.html#GiTs1989 GiTs1989]]
+ 10 V^3<span class=GramE>)_</span>x</p>
** One has ill-<span class="SpellE">posedness</span> in the supercritical regime [[references.html#BirKnPoSvVe1996 BirKnPoSvVe1996]]
** For small data one has scattering [[references.html#KnPoVe1993c KnPoVe1993c]].Note that one cannot have scattering in L^2 except in the critical case k=4 because one can scale <span class="SpellE">solitons</span> to be arbitrarily small in the non-critical cases.
** <span class="SpellE">Solitons</span> are H^1-unstable [[references.html#BnSouSr1987 BnSouSr1987]]
** If one considers an arbitrary smooth non-linearity (not necessarily a power) then one has LWP for small data in <span class="SpellE">H^s</span>, s > 1/2 [[references.html#St1995 St1995]]
* On R with any k, <span class="SpellE">gKdV</span>-k is GWP in <span class="SpellE">H^s</span> for s >= 1 [[references.html#KnPoVe1993 KnPoVe1993]], though for k >= 4 one needs the L^2 norm to be small; global weak solutions were constructed much earlier, with the same smallness assumption when k >= 4. This should be improvable below H^1 for all k.
* On R with any k, <span class="SpellE">gKdV</span>-k has the <span class="SpellE">H^s</span> norm growing like t^{(s-1)+} in time for any integer s >= 1 [[references.html#St1997b St1997b]]
* On R with any non-linearity, a non-zero solution to <span class="SpellE">gKdV</span> cannot be supported on the half-line R^+ (or R^-) for two different times [[references.html#KnPoVe-p3 KnPoVe-p3]], [KnPoVe-p4].
** In the completely <span class="SpellE">integrable</span> cases k=1,2 this is in [[references.html#Zg1992 Zg1992]]
** Also, a non-zero solution to <span class="SpellE">gKdV</span> cannot vanish on a rectangle in <span class="SpellE">spacetime</span> [[references.html#SauSc1987 SauSc1987]]; see also [[references.html#Bo1997b Bo1997b]].
** Extensions to higher order <span class="SpellE">gKdV</span> type equations are in [[references.html#Bo1997b Bo1997b]], [KnPoVe-p5].
* On R with non-integer k, one has decay of <span class="GramE">O(</span>t^{-1/3}) in L^\<span class="SpellE">infty</span> for small decaying data if k > (19 - <span class="SpellE">sqrt</span>(57))/4 ~ 2.8625... [[references.html#CtWs1991 CtWs1991]]
** A similar result for k > (5+<span class="GramE">sqrt(</span>73))/4 ~ 3.39... <span class="GramE">was</span> obtained in [[references.html#PoVe1990 PoVe1990]].
** When k=2 solutions decay like O(t^{-1/3}), and when k=1 solutions decay generically like O(t^{-2/3}) but like O( (t/log t)^{-2/3}) for exceptional data [[references.html#AbSe1977 AbSe1977]]
* In the L^2 <span class="SpellE">subcritical</span> case 0 < k < 4, <span class="SpellE">multisoliton</span> solutions are asymptotically H^1-stable [<span class="SpellE">MtMeTsa</span>-p]
** For a single <span class="SpellE">soliton</span> this is in [MtMe-p3], [<span class="SpellE">MtMe</span>-p], [[references.html#Miz2001 Miz2001]]; earlier work is in [[references.html#Bj1972 Bj1972]], [[references.html#Bn1975 Bn1975]], [[references.html#Ws1986 Ws1986]], [[references.html#PgWs1994 PgWs1994]]
* A dissipative version of <span class="SpellE">gKdV</span>-k was analyzed in [[references.html#MlRi2001 MlRi2001]]


<p><span class=GramE>with</span> Hamiltonian </p>
* On T with any k, <span class="SpellE">gKdV</span>-k has the <span class="SpellE">H^s</span> norm growing like t^{2(s-1)+} in time for any integer s >= 1 [[references.html#St1997b St1997b]]
* On T with k >= 3, <span class="SpellE">gKdV</span>-k is LWP for s >= 1/2 [[references.html#CoKeStTaTk-p3 CoKeStTkTa-p3]]
** Was shown for s >= 1 in [[references.html#St1997c St1997c]]
** Analytic well-<span class="SpellE">posedness</span> fails for s < 1/2 [[references.html#CoKeStTaTk-p3 CoKeStTkTa-p3]], [[references.html#KnPoVe1996 KnPoVe1996]]
** For arbitrary smooth non-<span class="SpellE">linearities</span>, weak H^1 solutions were constructed in [[references.html#Bo1993b Bo1993]].
* On T with k >= 3, <span class="SpellE">gKdV</span>-k is GWP for s >= 1 except in the <span class="SpellE">focussing</span> case [[references.html#St1997c St1997c]]
** The estimates in [[references.html#CoKeStTaTk-p3 CoKeStTkTa-p3]] suggest that this is improvable to 13/14 - 2/7k, but this has only been proven in the sub-critical case k=3 [[references.html#CoKeStTaTk-p3 CoKeStTkTa-p3]]. In the critical and super-critical cases there are some low-frequency issues which may require the techniques in [[references.html#KeTa-p <span class="SpellE">KeTa</span>-p]].


<p class=MsoNormal align=center style='text-align:center'><span class=GramE>H(</span>V)
<div class="MsoNormal" style="text-align: center"><center>
= \<span class=SpellE>int</span>&nbsp; V_xx^2 - 5 V^2 <span class=SpellE>V_xx</span>
----
- 5 V^4.</p>
</center></div>


<p>These flows all commute with each <span class=GramE>other,</span> and their
<center>'''The <span class="SpellE">KdV</span> Hierarchy'''</center>
Hamiltonians are conserved by all the flows simultaneously. </p>


<p>The <span class=SpellE>KdV</span> <span class=GramE>hierarchy are</span>
The <span class="SpellE">KdV</span> equation
examples of higher order water wave models; a general formulation is</p>


<p align=center style='text-align:center'><span class=SpellE>u_t</span> + <span
<center><span class="SpellE">V_t</span> + <span class="SpellE">V_xxx</span> = 6 <span class="SpellE">V_x</span></center>
class=SpellE>partial_x</span><span class=GramE>^{</span>2j+1} u = P(u, <span
class=SpellE>u_x</span>, ..., <span class=SpellE>partial_x</span>^{2j} u)</p>


<p><span class=GramE>where</span> u is real-valued and P is a polynomial with
<span class="GramE">can</span> be rewritten in the Lax Pair form
no constant or linear terms; thus <span class=SpellE>KdV</span> and <span
class=SpellE>gKdV</span> correspond to j=1, and the higher order equations in
the hierarchy correspond to j=2,3,etc.<span style='mso-spacerun:yes'>
</span>LWP for these equations in high regularity <span class=SpellE>Sobolev</span>
spaces is in [<a href="references.html#KnPoVe1994">KnPoVe1994</a>], and
independently by <span class=SpellE><span class=GramE>Cai</span></span> (ref?);
see also [<a href="references.html#CrKpSr1992">CrKpSr1992</a>].<span
style='mso-spacerun:yes'>  </span>The case j=2 was studied by <span
class=SpellE>Choi</span> (ref?).<span style='mso-spacerun:yes'>  </span>The
non-scalar diagonal case was treated in [<a href="references.html#KnSt1997">KnSt1997</a>];
the periodic case was studied in [Bo-p3].<span style='mso-spacerun:yes'>


</span>Note in the periodic case it is possible to have ill-<span class=SpellE>posedness</span>
<center><span class="SpellE">L_t</span> = [L, P]</center>
for every regularity, for instance <span class=SpellE>u_t</span> + <span
class=SpellE>u_xxx</span> = u^2 u_x^2 is ill-posed in every <span class=SpellE>H^s</span>
[Bo-p3]</p>


<p><o:p>&nbsp;</o:p></p>
<span class="GramE">where</span> L is the second-order operator


<div class=MsoNormal align=center style='text-align:center'>
<center>L = -D^2 + V</center>


<hr size=2 width="100%" align=center>
(D = d/<span class="SpellE">dx</span>) and P is the third-order <span class="SpellE">antiselfadjoint</span> operator


</div>
<center>P = 4D^3 + 3(DV + VD).</center>


<p class=MsoNormal align=center style='text-align:center'><a name=Benjamin-Ono></a><b>Benjamin-Ono
(<span class="GramE">note</span> that P consists of the <span class="SpellE">zeroth</span> order and higher terms of the formal power series expansion of 4i L^{3/2}).
equation</b></p>


<p class=MsoNormal>[Thanks to <span class=SpellE>Nikolay</span> <span
One can replace P with other fractional powers of L. For instance, the <span class="SpellE">zeroth</span> order and higher terms of 4i L<span class="GramE">^{</span>5/2} are
class=SpellE>Tzvetkov</span> and Felipe <span class=SpellE>Linares</span> for
help with this section - Ed] </p>


<p>The <i>generalized Benjamin-Ono equation</i> <span class=SpellE>BO_a</span>
<center>P = 4D^5 + 5(D^3 V + V D^3) - 5/4 (D <span class="SpellE">V_xx</span> + <span class="SpellE">V_xx</span> D) + 15/4 (D V^2 + V^2 D)</center>
is the scalar equation </p>


<p class=MsoNormal align=center style='text-align:center'><span class=SpellE>u_t</span>
<span class="GramE">and</span> the Lax pair equation becomes
+ <span class=SpellE>D_x</span><span class=GramE>^{</span>1+a} <span
class=SpellE>u_x</span> + <span class=SpellE>uu_x</span> = 0</p>


<p class=MsoNormal><span class=GramE>where</span> <span class=SpellE>D_x</span>
<center><span class="SpellE">V_t</span> + <span class="SpellE">u_xxxxx</span> = (5 V_x^2 + 10 V <span class="SpellE">V_xx</span> + 10 V^3<span class="GramE">)_</span>x</center>
= <span class=SpellE>sqrt</span>{-Delta} is the positive differentiation
operator.&nbsp; When a=1 this is <a href="#kdv"><span class=SpellE>KdV</span></a>;
when a=0 this is the Benjamin-Ono equation (BO) [<a
href="references.html#Bj1967">Bj1967</a>], [<a href="references.html#On1975">On1975</a>],
which models one-dimensional internal waves in deep water.&nbsp; Both of these
equations are completely <span class=SpellE>integrable</span> (see e.g. [<a
href="references.html#AbFs1983">AbFs1983</a>], [<a
href="references.html#CoiWic1990">CoiWic1990</a>]), though the intermediate
cases 0 &lt; a &lt; 1 are not. </p>


<p>When a=0, scaling is s = -1/2, and the following results are known: </p>
<span class="GramE">with</span> Hamiltonian


<ul type=disc>
<center><span class="GramE">H(</span>V) = \<span class="SpellE">int</span> V_xx^2 - 5 V^2 <span class="SpellE">V_xx</span> - 5 V^4.</center>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l26 level1 lfo29;tab-stops:list .5in'>LWP in <span class=SpellE>H^s</span>
    for s &gt;= 1 [Ta-p]</li>
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l26 level2 lfo29;tab-stops:list 1.0in'>For s &gt;= 9/8 this
      is in [<span class=SpellE>KnKoe</span>-p]</li>


  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
These flows all commute with each <span class="GramE">other,</span> and their Hamiltonians are conserved by all the flows simultaneously.
      auto;mso-list:l26 level2 lfo29;tab-stops:list 1.0in'>For s &gt;= 5/4 this
      is in [<span class=SpellE>KocTz</span>-p]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l26 level2 lfo29;tab-stops:list 1.0in'>For s &gt;= 3/2 this
      is in [<a href="references.html#Po1991">Po1991</a>]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l26 level2 lfo29;tab-stops:list 1.0in'>For s &gt; 3/2 this
      is in [<a href="references.html#Io1986">Io1986</a>]</li>


  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
The <span class="SpellE">KdV</span> <span class="GramE">hierarchy are</span> examples of higher order water wave models; a general formulation is
      auto;mso-list:l26 level2 lfo29;tab-stops:list 1.0in'>For s &gt; 3 this is
      in [<a href="references.html#Sau1979">Sau1979</a>]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l26 level2 lfo29;tab-stops:list 1.0in'>For no value of s is
      the solution map uniformly continuous [KocTz-p2]</li>
  <ul type=square>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l26 level3 lfo29;tab-stops:list 1.5in'>For s &lt; -1/2
      this is in [<span class=SpellE>BiLi</span>-p]</li>


  </ul>
<center><span class="SpellE">u_t</span> + <span class="SpellE">partial_x</span><span class="GramE">^{</span>2j+1} u = P(u, <span class="SpellE">u_x</span>, ..., <span class="SpellE">partial_x</span>^{2j} u)</center>
</ul>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l26 level1 lfo29;tab-stops:list .5in'>Global weak solutions exist
    for L^2 data [<a href="references.html#Sau1979">Sau1979</a>], [<a
    href="references.html#GiVl1989b">GiVl1989b</a>], [<a
    href="references.html#GiVl1991">GiVl1991</a>], [<a
    href="references.html#Tom1990">Tom1990</a>]</li>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l26 level1 lfo29;tab-stops:list .5in'>Global well-<span
    class=SpellE>posedness</span> in <span class=SpellE>H^s</span> for s &gt;=
    1 [Ta-p]</li>


<ul type=circle>
<span class="GramE">where</span> u is real-valued and P is a polynomial with no constant or linear terms; thus <span class="SpellE">KdV</span> and <span class="SpellE">gKdV</span> correspond to j=1, and the higher order equations in the hierarchy correspond to j=2,3,etc.LWP for these equations in high regularity <span class="SpellE">Sobolev</span> spaces is in [[references.html#KnPoVe1994 KnPoVe1994]], and independently by <span class="SpellE"><span class="GramE">Cai</span></span> (ref?); see also [[references.html#CrKpSr1992 CrKpSr1992]].The case j=2 was studied by <span class="SpellE">Choi</span> (ref?).The non-scalar diagonal case was treated in [[references.html#KnSt1997 KnSt1997]]; the periodic case was studied in [Bo-p3].Note in the periodic case it is possible to have ill-<span class="SpellE">posedness</span> for every regularity, for instance <span class="SpellE">u_t</span> + <span class="SpellE">u_xxx</span> = u^2 u_x^2 is ill-posed in every <span class="SpellE">H^s</span> [Bo-p3]
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l26 level2 lfo29;tab-stops:list 1.0in'>For s &gt;= 3/2 this
      is in [<a href="references.html#Po1991">Po1991</a>]</li>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l26 level2 lfo29;tab-stops:list 1.0in'>For smooth solutions
      this is in [<a href="references.html#Sau1979">Sau1979</a>]</li>
</ul>
</ul>


<p class=MsoNormal>When 0 &lt; a &lt; 1, scaling is s = -1/2 - <span
<div class="MsoNormal" style="text-align: center"><center>
class=GramE>a,</span> and the following results are known: </p>
----
</center></div>


<ul type=disc>
<center>'''Benjamin-Ono equation'''</center>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l1 level1 lfo30;tab-stops:list .5in'>LWP in <span class=SpellE>H^s</span>
    is known for s &gt; 9/8 &#8211; 3a/8 [<span class=SpellE>KnKoe</span>-p]</li>


<ul type=circle>
[Thanks to <span class="SpellE">Nikolay</span> <span class="SpellE">Tzvetkov</span> and Felipe <span class="SpellE">Linares</span> for help with this section - Ed]
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l1 level2 lfo30;tab-stops:list 1.0in'>For s &gt;= 3/4 (2-a)
      this is in [<a href="references.html#KnPoVe1994b">KnPoVe1994b</a>]</li>
</ul>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l1 level1 lfo30;tab-stops:list .5in'>GWP is known when s &gt;=
    (a+1)/2 when a &gt; 4/5, from the conservation of the Hamiltonian [<a
    href="references.html#KnPoVe1994b">KnPoVe1994b</a>]</li>


<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
The ''generalized Benjamin-Ono equation'' <span class="SpellE">BO_a</span> is the scalar equation
    mso-list:l1 level1 lfo30;tab-stops:list .5in'>The LWP results are obtained
    by energy methods; it is known that pure iteration methods cannot work [<a
    href="references.html#MlSauTz2001">MlSauTz2001</a>]</li>
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l1 level2 lfo30;tab-stops:list 1.0in'>However, this can be
      salvaged by combining the <span class=SpellE>H^s</span> norm || f ||_{<span
      class=SpellE>H^s</span>} with a weighted <span class=SpellE>Sobolev</span>
      space, namely || <span class=SpellE>xf</span> ||_{H^{s - 2s_*}}, where
      s_* = (a+1)/2 is the energy regularity.[CoKnSt-p4]</li>


</ul>
<center><span class="SpellE">u_t</span> + <span class="SpellE">D_x</span><span class="GramE">^{</span>1+a} <span class="SpellE">u_x</span> + <span class="SpellE">uu_x</span> = 0</center>
</ul>


<p class=MsoNormal>One can replace the quadratic non-linearity <span
<span class="GramE">where</span> <span class="SpellE">D_x</span> = <span class="SpellE">sqrt</span>{-Delta} is the positive differentiation operator. When a=1 this is [#kdv <span class="SpellE">KdV</span>]<nowiki>; when a=0 this is the Benjamin-Ono equation (BO) [</nowiki>[references.html#Bj1967 Bj1967]], [[references.html#On1975 On1975]], which models one-dimensional internal waves in deep water. Both of these equations are completely <span class="SpellE">integrable</span> (see e.g. [[references.html#AbFs1983 AbFs1983]], [[references.html#CoiWic1990 CoiWic1990]]), though the intermediate cases 0 < a < 1 are not.
class=SpellE>uu_x</span> by higher powers u<span class=GramE>^{</span>k-1} <span
class=SpellE>u_x</span>, in analogy with <span class=SpellE>KdV</span> and <span
class=SpellE>gKdV</span>, giving rise to the <span class=SpellE>gBO</span>-k
equations (let us take a=0 for sake of discussion).<span
style='mso-spacerun:yes'>  </span>The scaling exponent is 1/2 - 1<span
class=GramE>/(</span>k-1).</p>


<ul type=disc>
When a=0, scaling is s = -1/2, and the following results are known:
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l21 level1 lfo31;tab-stops:list .5in'>For k=3, one has GWP for
    large data in H^1 [<span class=SpellE>KnKoe</span>-p] and LWP for small
    data in <span class=SpellE>H^s</span>, s &gt; ½ [<span class=SpellE>MlRi</span>-p]</li>
<ul type=circle>
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
      auto;mso-list:l21 level2 lfo31;tab-stops:list 1.0in'>For small data in <span
      class=SpellE>H^s</span>, s&gt;1, LWP was obtained in [<a
      href="references.html#KnPoVe1994b">KnPoVe1994b</a>]</li>


  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
* LWP in <span class="SpellE">H^s</span> for s >= 1 [Ta-p]
      auto;mso-list:l21 level2 lfo31;tab-stops:list 1.0in'>With the addition of
** For s >= 9/8 this is in [<span class="SpellE">KnKoe</span>-p]
      a small viscosity term, GWP can also be obtained in H^1 by complete <span
** For s >= 5/4 this is in [<span class="SpellE">KocTz</span>-p]
      class=SpellE>integrability</span> methods in [FsLu2000], with <span
** For s >= 3/2 this is in [[references.html#Po1991 Po1991]]
      class=SpellE>asymptotics</span> under the additional assumption that the
** For s > 3/2 this is in [[references.html#Io1986 Io1986]]
      initial data is in L^1.</li>
** For s > 3 this is in [[references.html#Sau1979 Sau1979]]
  <li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
** For no value of s is the solution map uniformly continuous [KocTz-p2]
      auto;mso-list:l21 level2 lfo31;tab-stops:list 1.0in'>For s &lt; ½, the
*** For s < -1/2 this is in [<span class="SpellE">BiLi</span>-p]
      solution map is not C^3 [<span class=SpellE>MlRi</span>-p]</li>
* Global weak solutions exist for L^2 data [[references.html#Sau1979 Sau1979]], [[references.html#GiVl1989b GiVl1989b]], [[references.html#GiVl1991 GiVl1991]], [[references.html#Tom1990 Tom1990]]
</ul>
* Global well-<span class="SpellE">posedness</span> in <span class="SpellE">H^s</span> for s >= 1 [Ta-p]
** For s >= 3/2 this is in [[references.html#Po1991 Po1991]]
** For smooth solutions this is in [[references.html#Sau1979 Sau1979]]


<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
When 0 < a < 1, scaling is s = -1/2 - <span class="GramE">a,</span> and the following results are known:
    mso-list:l21 level1 lfo31;tab-stops:list .5in'>For k=4, LWP for small data
    in <span class=SpellE>H^s</span>, s &gt; 5/6 was obtained in [<a
    href="references.html#KnPoVe1994b">KnPoVe1994b</a>].</li>
<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
    mso-list:l21 level1 lfo31;tab-stops:list .5in'>For k&gt;4, LWP for small
    data in <span class=SpellE>H^s</span>, s &gt;=3/4 was obtained in [<a
    href="references.html#KnPoVe1994b">KnPoVe1994b</a>].</li>


<li class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
* LWP in <span class="SpellE">H^s</span> is known for s > 9/8 – 3a/8 [<span class="SpellE">KnKoe</span>-p]
    mso-list:l21 level1 lfo31;tab-stops:list .5in'>For any k &gt;= 3 and s
** For s >= 3/4 (2-a) this is in [[references.html#KnPoVe1994b KnPoVe1994b]]
    &lt; 1/2 - 1/k the solution map is not uniformly continuous [<span
* GWP is known when s >= (a+1)/2 when a > 4/5, from the conservation of the Hamiltonian [[references.html#KnPoVe1994b KnPoVe1994b]]
    class=SpellE>BiLi</span>-p]</li>
* The LWP results are obtained by energy methods; it is known that pure iteration methods cannot work [[references.html#MlSauTz2001 MlSauTz2001]]
</ul>
** However, this can be salvaged by combining the <span class="SpellE">H^s</span> norm || f ||_{<span class="SpellE">H^s</span>} with a weighted <span class="SpellE">Sobolev</span> space, namely || <span class="SpellE">xf</span> ||_{H^{s - 2s_*}}, where s_* = (a+1)/2 is the energy regularity.[CoKnSt-p4]


<p class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto'>The
One can replace the quadratic non-linearity <span class="SpellE">uu_x</span> by higher powers u<span class="GramE">^{</span>k-1} <span class="SpellE">u_x</span>, in analogy with <span class="SpellE">KdV</span> and <span class="SpellE">gKdV</span>, giving rise to the <span class="SpellE">gBO</span>-k equations (let us take a=0 for sake of discussion).The scaling exponent is 1/2 - 1<span class="GramE">/(</span>k-1).
<span class=SpellE>KdV</span>-Benjamin Ono (<span class=SpellE>KdV</span>-BO)
equation is formed by combining the linear parts of the <span class=SpellE>KdV</span>


and Benjamin-Ono equations together.<span style='mso-spacerun:yes'>  </span>It
* For k=3, one has GWP for large data in H^1 [<span class="SpellE">KnKoe</span>-p] and LWP for small data in <span class="SpellE">H^s</span>, s > ½ [<span class="SpellE">MlRi</span>-p]
is globally well-posed in L^2 [<a href="references.html#Li1999">Li1999</a>],
** For small data in <span class="SpellE">H^s</span>, s>1, LWP was obtained in [[references.html#KnPoVe1994b KnPoVe1994b]]
and locally well-posed in H<span class=GramE>^{</span>-3/4+} [<span
** With the addition of a small viscosity term, GWP can also be obtained in H^1 by complete <span class="SpellE">integrability</span> methods in [FsLu2000], with <span class="SpellE">asymptotics</span> under the additional assumption that the initial data is in L^1.
class=SpellE>KozOgTns</span>] (see also [<span class=SpellE>HuoGuo</span>-p]
** For s < ½, the solution map is not C^3 [<span class="SpellE">MlRi</span>-p]
where H^{-1/8+} is obtained).<span style='mso-spacerun:yes'> </span>Similarly
* For k=4, LWP for small data in <span class="SpellE">H^s</span>, s > 5/6 was obtained in [[references.html#KnPoVe1994b KnPoVe1994b]].
one can generalize the non-linearity to be k-linear, generating for instance
* For k>4, LWP for small data in <span class="SpellE">H^s</span>, s >=3/4 was obtained in [[references.html#KnPoVe1994b KnPoVe1994b]].
the modified <span class=SpellE>KdV</span>-BO equation, which is locally
* For any k >= 3 and s < 1/2 - 1/k the solution map is not uniformly continuous [<span class="SpellE">BiLi</span>-p]
well-posed in H<span class=GramE>^{</span>1/4+} [<span class=SpellE>HuoGuo</span>-p].<span
style='mso-spacerun:yes'>  </span>For general <span class=SpellE>gKdV-gBO</span>


equations one has local well-<span class=SpellE><span class=GramE>posedness</span></span><span
The <span class="SpellE">KdV</span>-Benjamin Ono (<span class="SpellE">KdV</span>-BO) equation is formed by combining the linear parts of the <span class="SpellE">KdV</span> and Benjamin-Ono equations together.It is globally well-posed in L^2 [[references.html#Li1999 Li1999]], and locally well-posed in H<span class="GramE">^{</span>-3/4+} [<span class="SpellE">KozOgTns</span>] (see also [<span class="SpellE">HuoGuo</span>-p] where H^{-1/8+} is obtained).Similarly one can generalize the non-linearity to be k-linear, generating for instance the modified <span class="SpellE">KdV</span>-BO equation, which is locally well-posed in H<span class="GramE">^{</span>1/4+} [<span class="SpellE">HuoGuo</span>-p].For general <span class="SpellE">gKdV-gBO</span> equations one has local well-<span class="SpellE"><span class="GramE">posedness</span></span><span class="GramE">in</span> H^3 and above [[references.html#GuoTan1992 GuoTan1992]].One can also add damping terms <span class="SpellE">Hu_x</span> to the equation; this arises as a model for ion-acoustic waves of finite amplitude with linear Landau damping [[references.html#OttSud1982 OttSud1982]].
class=GramE><span style='mso-spacerun:yes'> </span>in</span> H^3 and above [<a
href="references.html#GuoTan1992">GuoTan1992</a>].<span
style='mso-spacerun:yes'> </span>One can also add damping terms <span
class=SpellE>Hu_x</span> to the equation; this arises as a model for ion-acoustic
waves of finite amplitude with linear Landau damping [<a
href="references.html#OttSud1982">OttSud1982</a>].</p>


</div>
</div>
</body>
</html>

Revision as of 02:34, 20 July 2006

Equations of Korteweg de Vries type


Overview

The KdV family of equations are of the form

u_t + u_{xxx} + P(u)_x = 0

where u(x,t) is a function of one space and one time variable, and P(u) is some polynomial of u. One can place various normalizing constants in front of the u_{xxx} and P(u) terms, but they can usually be scaled out. The function u and the polynomial P are usually assumed to be real.

Historically, these types of equations first arose in the study of 2D shallow wave propagation, but have since appeared as limiting cases of many dispersive models. Interestingly, the 2D shallow wave equation can also give rise to the Boussinesq or [schrodinger.html#Cubic NLS on R 1D NLS-3] equation by making more limiting assumptions (in particular, weak nonlinearity and slowly varying amplitude).

The x variable is usually assumed to live on the real line R (so there is some decay at infinity) or on the torus T (so the data is periodic). The half-line has also been studied, as has the case of periodic data with large period. It might be interesting to look at whether the periodicity assumption can be perturbed (e.g. quasi-periodic data); it is not clear whether the phenomena we see in the periodic problem are robust under perturbations, or are number-theoretic artefacts of perfect periodicity.

When P(u) = c u^{k+1}, then the equation is referred to as generalized gKdV of order k, or gKdV-k. gKdV-1 is the original Korteweg de Vries (KdV) equation, gKdV-2 is the modified KdV (mKdV) equation. KdV and mKdV are quite special, being the only equations in this family which are completely integrable.

If k is even, the sign of c is important. The c < 0 case is known as the defocussing case, while c > 0 is the focussing case. When k is odd, the constant c can always be scaled out, so we do not distinguish focussing and defocussing in this case.

Drift terms u_x can be added, but they can be subsumed into the polynomial P(u) or eliminated by a Gallilean transformation [except in the half-line case]. Indeed, one can freely insert or remove any term of the form a'(t) u_x by shifting the x variable by a(t), which is especially useful for periodic higher-order gKdV equations (setting a'(t) equal to the mean of P(u(t))).

KdV-type equations on R or T always come with three conserved quantities:

Mass: \int u dx
L^2: \int u^2 dx
Hamiltonian: \int u_x^2 - V(u) dx

where V is a primitive of P. Note that the Hamiltonian is positive-definite in the defocussing cases (if u is real); thus the defocussing equations have a better chance of long-term existence. The mass has no definite sign and so is only useful in specific cases (e.g. perturbations of a soliton).

In general, the above three quantities are the only conserved quantities available, but the [#kdv KdV] and [#mkdv mKdV] equations come with infinitely many more such conserved quantities due to their completely integrable nature.

The critical (or scaling) regularity is

s_c = 1/2 - 2/k.

In particular, [#kdv KdV], [#mkdv mKdV], and gKdV-3 are subcritical with respect to L^2, gKdV-4 is L^2 critical, and all the other equations are L^2 supercritical. Generally speaking, the potential energy term V(u) can be pretty much ignored in the sub-critical equations, needs to be dealt with carefully in the critical equation, and can completely dominate the Hamiltonian in the super-critical equations (to the point that blowup occurs if the equation is not defocussing). Note that H^1 is always a sub-critical regularity.

The dispersion relation \tau = \xi^3 is always increasing, which means that singularities always propagate to the left. In fact, high frequencies propagate leftward at extremely high speeds, which causes a smoothing effect if there is some decay in the initial data (L^2 will do). On the other hand, KdV-type equations have the remarkable property of supporting localized travelling wave solutions known as solitons, which propagate to the right. It is known that solutions to the completely integrable equations (i.e. KdV and mKdV) always resolve to a superposition of solitons as t -> infinity, but it is an interesting open question as to whether the same phenomenon occurs for the other KdV-type equations.

A KdV-type equation can be viewed as a symplectic flow with the Hamiltonian defined above, and the symplectic form given by

{u, v} := \int u v_x dx.

Thus H^{-1/2} is the natural Hilbert space in which to study the symplectic geometry of these flows. Unfortunately, the gKdV-k equations are only locally well-posed in H^{-1/2} when k=1.


Airy estimates

Solutions to the Airy equation and its perturbations are either estimated in mixed space-time norms L^q_t L^r_x, L^r_x L^q_t, or in X^{s,b} spaces, defined by

|| u ||_{s,b} = || <xi>^s <tau-xi^3>^b \hat{u} ||_2.

Linear space-time estimates in which the space norm is evaluated first are known as [#kdv_linear Strichartz estimates], but these estimates only play a minor role in the theory. A more important category of linear estimates are the smoothing estimates and maximal function estimates. The X^{s,b} spaces are used primarily for [#kdv_bilinear bilinear estimates], although more recently [#KdV_multilinear multilinear estimates have begun to appear]. These spaces and estimates first appear in the context of the Schrodinger equation in references.html#Bo1993b Bo1993b, although the analogues spaces for the wave equation appeared earlier references.html#RaRe1982 RaRe1982, references.html#Be1983 Be1983 in the context of propogation of singularities. See also references.html#Bo1993 Bo1993, references.html#KlMa1993 KlMa1993.


Linear Airy estimates
  • If u is in X^{0,1/2+} on R, then
  • If u is in X^{0,1/2+} on T, then
    • u is in L^\infty_t L^2_x (energy estimate). This is also true in the large period case.
    • u is in L^4_{x,t} locally in time (in fact one only needs u in X^{0,1/3} for this) references.html#Bo1993b Bo1993b.
    • D_x^{-\eps} u is in L^6_{x,t} locally in time. references.html#Bo1993b Bo1993b. It is conjectured that this can be improved to L^8_{x,t}.
    • Remark: there is no smoothing on the circle, so one can never gain regularity.
  • If u is in X^{0,1/2} on a circle with large period \lambda, then
    • u is in L^4_{x,t} locally in time, with a bound of \lambda^{0+}.
      • In fact, when u has frequency N, the constant is like \lambda^{0+} (N^{-1/8} + \lambda^{-1/4}), which recovers the 1/8 smoothing effect on the line in L^4 mentioned earlier. references.html#CoKeStTaTk-p2 CoKeStTkTa-p2

----

Bilinear Airy estimates
  • The key algebraic fact is
\xi_1^3 + \xi_2^3 + \xi_3^3 = 3 \xi_1 \xi_2 \xi_3
(whenever \xi_1 + \xi_2 + \xi_3 = 0)
|| (uv)_x ||_{-3/4+, -1/2+} <~ || u ||_{-3/4+, 1/2+} || v ||_{-3/4+, 1/2+}
|| (uv)_x ||_{0, -1/2+} <~ || u ||_{-3/8+, 1/2+} || v ||_{-3/8+, 1/2+}
|| (uv)_x ||_{s, -1/2} <~ || u ||_{s, 1/2} || v ||_{s, 1/2}
  • Remark: In principle, a complete list of bilinear estimates could be obtained from [[references.html#Ta-p2 Ta-p2]].

Trilinear Airy estimates
  • The key algebraic fact is (various permutations of)
\xi_1^3 + \xi_2^3 + \xi_3^3 + \xi_4^3 = 3 (\xi_1+\xi_4) (\xi_2+\xi_4) (\xi_3+\xi_4)
(whenever \xi_1 + \xi_2 + \xi_3 + \xi_4 = 0)
|| (uvw)_x ||_{1/4, -1/2+} <~ || u ||_{1/4, 1/2+} || v ||_{1/4, 1/2+} || w ||_{1/4, 1/2+}

The 1/4 is sharp references.html#KnPoVe1996 KnPoVe1996.We also have

|| uvw ||_{-1/4, -5/12+} <~ || u ||_{-1/4, 7/12+} || v ||_{-1/4, 7/12+} || w ||_{-1/4, 7/12+}

see [Cv-p].

|| (uvw)_x ||_{1/2, -1/2} <~ || u ||_{1/2, 1/2*} || v ||_{1/2, 1/2*} || w ||_{1/2, 1/2*}

The 1/2 is sharp references.html#KnPoVe1996 KnPoVe1996.

  • Remark: the trilinear estimate always needs one more derivative of regularity than the bilinear estimate; this is consistent with the heuristics from the Miura transform from mKdV to KdV.

Multilinear Airy estimates
  • We have the quintilinear estimate on R: [[references.html#CoKeStTaTk-p2 CoKeStTkTa-p2]]
\int u^3 v^2 dx dt <~ || u ||_{1/4+,1/2+}^3 || v ||_{-3/4+,1/2+}^2
  • The analogue for this on T is: [[references.html#CoKeStTaTk-p2 CoKeStTkTa-p2], [references.html#CoKeStTaTk-p3 CoKeStTkTa-p3]]
\int u^3 v^2 dx dt <~ || u ||_{1/2,1/2*}^3 || v ||_{-1/2,1/2*}^2

In fact, this estimate also holds for large period, but a loss of lambda^{0+}.


The KdV equation

The KdV equation is

u_t + u_xxx + u u_x = 0.

It is completely integrable, and has infinitely many conserved quantities. Indeed, for each non-negative integer k, there is a conserved quantity which is roughly equivalent to the H^k norm of u.

The KdV equation has been studied on the [#kdv_on_R line], the [#kdv_on_T circle], and the [#KdV_on_R+ half-line].


KdV on R

The KdV equation can also be generalized to a 2x2 system

u_t + u_xxx + a_3 v_xxx + u u_x + a_1 v v_x + a_2 (uv)_x = 0
b_1 v_t + v_xxx + b_2 a_3 u_xxx + v v_x + b_2 a_2 u u_x + b_2 a_1 (uv)_x + r v_x

where b_1,b_2 are positive constants and a_1,a_2,a_3,r are real constants. This system was introduced in references.html#GeaGr1984 GeaGr1984 to study strongly interacting pairs of weakly nonlinear long waves, and studied further in references.html#BnPoSauTm1992 BnPoSauTm1992. In references.html#AsCoeWgg1996 AsCoeWgg1996 it was shown that this system was also globally well-posed on L^2.
It is an interesting question as to whether these results can be pushed further to match the KdV theory; the apparent lack of complete integrability in this system (for generic choices of parameters b_i, a_i, r) suggests a possible difficulty.


KdV on R^+
  • The KdV Cauchy-boundary problem on the half-line is
u_t + u_{xxx} + u_x + u u_x = 0; u(x,0) = u_0(x); u(0,t) = h(t)

The sign of u_{xxx} is important (it makes the influence of the boundary x=0 mostly negligible), the sign of u u_x is not. The drift term u_x appears naturally from the derivation of KdV from fluid mechanics. (On R, this drift term can be eliminated by a Gallilean transform, but this is not available on the half-line).

  • Because one is restricted to the half-line, it becomes a little tricky to use the Fourier transform. One approach is to use the Fourier-Laplace transform instead.
  • Some compatibility conditions between u_0 and h are needed. The higher the regularity, the more compatibility conditions are needed. If the initial data u_0 is in H^s, then by scaling heuristics the natural space for h is in H^{(s+1)/3}. (Remember that time has dimensions length^3).
  • LWP is known for initial data in H^s and boundary data in H^{(s+1)/3} for s >= 0 [CoKe-p], assuming compatibility. The drift term may be omitted because of the time localization.
    • For s > 3/4 this was proven in [[references.html#BnSuZh-p BnSuZh-p]] (assuming that there is a drift term).
    • Was proven for data in sufficiently weighted H^1 spaces in references.html#Fa1983 Fa1983.
    • From the real line theory one might expect to lower this to -3/4, but there appear to be technical difficulties with this.
  • GWP is known for initial data in L^2 and boundary data in H^{7/12}, assuming compatibility.
    • for initial data in H^1 and boundary data in H^{5/6}_loc this was proven in [[references.html#BnSuZh-p BnSuZh-p]]
    • Was proven for smooth data in references.html#BnWi1983 BnWi1983

KdV on T
  • Scaling is s_c = -3/2.
  • C^0 LWP in H^s for s >= -1, assuming u is real [KpTp-p]
    • C^0 LWP in H^s for s >= -5/8 follows (at least in principle) from work on the mKdV equation by [Takaoka and Tsutsumi?]
    • Analytic LWP in H^s for s >= -1/2, in the complex case references.html#KnPoVe1996 KnPoVe1996. In addition to the usual bilinear estimate, one needs a linear estimate to keep the solution in H^s for t>0.
    • Analytic LWP was proven for s >= 0 in references.html#Bo1993b Bo1993b.
    • Analytic ill posedness at s<-1/2, even in the real case references.html#Bo1997 Bo1997
      • This has been refined to failure of uniform continuity at s<-1/2 [CtCoTa-p]
    • Remark: s=-1/2 is the symplectic regularity, and so the machinery of infinite-dimensional symplectic geometry applies once one has a continuous flow, although there are some technicalities involving approximating KdV by a suitable symplectic finite-dimensional flow. In particular one has symplectic non-squeezing [CoKeStTkTa-p9], references.html#Bo1999 Bo1999.
  • C^0 GWP in H^s for s >= -1, in the real case [KpTp-p].

The modified KdV equation

The (defocussing) mKdV equation is

u_t + u_xxx = 6 u^2 u_x.

It is completely integrable, and has infinitely many conserved quantities. Indeed, for each non-negative integer k, there is a conserved quantity which is roughly equivalent to the H^k norm of u. This equation has been studied on the [#mKdV_on_R line], [#mKdV_on_T circle], and [#gKdV_on_R+ half-line].

The Miura transformation v = u_x + u^2 transforms a solution of defocussing mKdV to a solution of [#kdv KdV]

v_t + v_xxx = 6 v v_x.

Thus one expects the LWP and GWP theory for mKdV to be one derivative higher than that for KdV.

The focussing mKdV

u_t + u_xxx = - 6 u^2 u_x

is very similar, except that the Miura transform is now v = u_x + i u^2. This transforms focussing mKdV to complex-valued KdV, which is a slightly less tractable equation. (However, the transformed solution v is still real in the highest order term, so in principle the real-valued theory carries over to this case).

The Miura transformation can be generalized. If v and w solve the system

v_t + v_xxx = 6(v^2 + w) v_x
w_t + w_xxx = 6(v^2 + w) w_x

Then u = v^2 + v_x + w is a solution of KdV. In particular, if a and b are constants and v solves

v_t + v_xxx = 6(a^2 v^2 + bv) v_x

then u = a^2 v^2 + av_x + bv solves KdV (this is the Gardener transform).


mKdV on R and R^+
  • Scaling is s_c = -1/2.
  • LWP in H^s for s >= 1/4 references.html#KnPoVe1993 KnPoVe1993
    • Was shown for s>3/2 in references.html#GiTs1989 GiTs1989
    • This is sharp in the focussing case [[references.html#KnPoVe-p KnPoVe-p]], in the sense that the solution map is no longer uniformly continuous for s < 1/4.
    • The same result has also been established for the half-line [CoKe-p], assuming boundary data is in H^{(s+1)/3} of course.
    • Global weak solutions in L^2 were constructed in references.html#Ka1983 Ka1983. Thus in L^2 one has global existence but no uniform continuity.
    • Uniqueness is also known when the initial data lies in the weighted space <x>^{3/8} u_0 in L^2 references.html#GiTs1989 GiTs1989
    • LWP has also been demonstrated when <xi>^s hat(u_0) lies in L^{r’} for 4/3 < r <= 2 and s >= ½ - 1/2r [Gr-p4]
  • GWP in H^s for s > 1/4 references.html#CoKeStTaTk-p2 CoKeStTkTa-p2, via the KdV theory and the Miura transform, for both the focussing and defocussing cases.
    • Was proven for s>3/5 in references.html#FoLiPo1999 FoLiPo1999
    • Is implicit for s >= 1 from references.html#KnPoVe1993 KnPoVe1993
    • On the half-line GWP is known when s >= 1 and the boundary data is in H^{11/12}, assuming compatibility and small L^2 norm [CoKe-p]
    • GWP for smooth data can also be achieved from inverse scattering methods [BdmFsShp-p]; the same approach also works on an interval [BdmShp-p].
    • Solitions are asymptotically H^1 stable [MtMe-p3], [MtMe-p]

mKdV on T
  • Scaling is s_c = -1/2.
  • C^0 LWP in L^2 in the defocusing case [KpTp-p2]
  • C^0 GWP in L^2 in the defocusing case [KpTp-p2]
    • Analytic GWP in H^s for s >= 1/2 [[references.html#CoKeStTaTk-p2 CoKeStTkTa-p2]], via the KdV theory and the Miura transform, for both the focussing and defocussing cases.
    • Was proven for s >= 1 in references.html#KnPoVe1993 KnPoVe1993, references.html#Bo1993b Bo1993b.
    • One has GWP for random data whose Fourier coefficients decay like 1/|k| (times a Gaussian random variable) references.html#Bo1995c Bo1995c. Indeed one has an invariant measure. Note that such data barely fails to be in H^{1/2}, however one can modify the local well-posedness theory to go below H^{1/2} provided that one has a decay like O(|k|^{-1+\eps}) on the Fourier coefficients (which is indeed the case almost surely).

gKdV_3 on R and R^+

gKdV_3 on T

gKdV_4 on R and R^+

(Thanks to Felipe Linares for help with the references here - Ed.)A good survey for the results here is in [Tz-p2].

  • Scaling is s_c = 0 (i.e. L^2-critical).
  • LWP in H^s for s >= 0 references.html#KnPoVe1993 KnPoVe1993
    • Was shown for s>3/2 in references.html#GiTs1989 GiTs1989
    • The same result s >= 0 has also been established for the half-line [CoKe-p], assuming boundary data is in H^{(s+1)/3} of course..
  • GWP in H^s for s > 3/4 in both the focusing and defocusing cases, though one must of course have smaller L^2 mass than the ground state in the focusing case [FoLiPo-p].
    • For s >= 1 and the defocusing case this is in references.html#KnPoVe1993 KnPoVe1993
    • Blowup has recently been shown for the focussing case for data close to a ground state with negative energy [Me-p]. In such a case the blowup profile must approach the ground state (modulo scalings and translations), see [MtMe-p4], references.html#MtMe2001 MtMe2001. Also, the blow up rate in H^1 must be strictly faster than t^{-1/3} [MtMe-p4], which is the rate suggested by scaling.
    • Explicit self-similar blow-up solutions have been constructed [BnWe-p] but these are not in L^2.
    • GWP for small L^2 data in either case references.html#KnPoVe1993 KnPoVe1993. In the focussing case we have GWP whenever the L^2 norm is strictly smaller than that of the ground state Q (thanks to Weinstein's sharp Gagliardo-Nirenberg inequality). It seems like a reasonable (but difficult) conjecture to have GWP for large L^2 data in the defocusing case.
    • On the half-line GWP is known when s >= 1 and the boundary data is in H^{11/12}, assuming compatibility and small L^2 norm [CoKe-p]
  • Solitons are H^1-unstable references.html#MtMe2001 MtMe2001. However, small H^1 perturbations of a soliton must asymptotically converge weakly to some rescaled soliton shape provided that the H^1 norm stays comparable to 1 [[references.html#MtMe-p MtMe-p]].

gKdV_4 on T

gKdV on R^+
  • The gKdV Cauchy-boundary problem on the half-line is
u_t + u_{xxx} + u_x + u^k u_x = 0; u(x,0) = u_0(x); u(0,t) = h(t)

The sign of u_{xxx} is important (it makes the influence of the boundary x=0 mostly negligible), the sign of u u_x is not. The drift term u_x is convenient for technical reasons; it is not known whether it is truly necessary.

  • LWP is known for initial data in H^s and boundary data in H^{(s+1)/3} when s > 3/4 [CoKn-p].
    • The techniques are based on references.html#KnPoVe1993 KnPoVe1993 and a replacement of the IVBP with a forced IVP.
    • This has been improved to s >= s_c = 1/2 - 2/k when k > 4 [CoKe-p].
    • For [#KdV_on_R+ KdV], [#mKdV_on_R mKdV], [#gKdV_3_on_R gKdV-3] , and [#gKdV_4_on_R gKdV-4] see the corresponding sections on this page.

Nonlinear Schrodinger-Airy equation

The equation

u_t + i c u_xx + u_xxx = i gamma |u|^2 u + delta |u|^2 u_x + epsilon u^2 u_x

on R is a combination of the [schrodinger.html#Cubic_NLS_on_R cubic NLS equation] , the [schrodinger.html#dnls-3_on_R derivative cubic NLS equation], [#mKdV_on_R complex mKdV], and a cubic nonlinear Airy equation.This equation is a general model for propogation of pulses in an optical fiber references.html#Kod1985 Kod1985, references.html#HasKod1987 HasKod1987

·When c=delta=epsilon = 0, scaling is s=-1.When c=gamma=0, scaling is –1/2.

·LWP is known when s >= ¼ references.html#St1997d St1997d

oFor s > ¾ this is in references.html#Lau1997 Lau1997, references.html#Lau2001 Lau2001

oThe s>=1/4 result is also known when c is a time-dependent function [Cv2002], [CvLi2003]

oFor s < -1/4 and delta or epsilon non-zero, the solution map is not C^3 [CvLi-p]

oWhen delta = epsilon = 0 LWP is known for s > -1/4 references.html#Cv2004 Cv2004

§For s < -1/4 the solution map is not C^3 [CvLi-p]


Miscellaneous gKdV results

[Thanks to Nikolaos Tzirakis for some corrections - Ed.]


The KdV Hierarchy

The KdV equation

V_t + V_xxx = 6 V_x

can be rewritten in the Lax Pair form

L_t = [L, P]

where L is the second-order operator

L = -D^2 + V

(D = d/dx) and P is the third-order antiselfadjoint operator

P = 4D^3 + 3(DV + VD).

(note that P consists of the zeroth order and higher terms of the formal power series expansion of 4i L^{3/2}).

One can replace P with other fractional powers of L. For instance, the zeroth order and higher terms of 4i L^{5/2} are

P = 4D^5 + 5(D^3 V + V D^3) - 5/4 (D V_xx + V_xx D) + 15/4 (D V^2 + V^2 D)

and the Lax pair equation becomes

V_t + u_xxxxx = (5 V_x^2 + 10 V V_xx + 10 V^3)_x

with Hamiltonian

H(V) = \int V_xx^2 - 5 V^2 V_xx - 5 V^4.

These flows all commute with each other, and their Hamiltonians are conserved by all the flows simultaneously.

The KdV hierarchy are examples of higher order water wave models; a general formulation is

u_t + partial_x^{2j+1} u = P(u, u_x, ..., partial_x^{2j} u)

where u is real-valued and P is a polynomial with no constant or linear terms; thus KdV and gKdV correspond to j=1, and the higher order equations in the hierarchy correspond to j=2,3,etc.LWP for these equations in high regularity Sobolev spaces is in references.html#KnPoVe1994 KnPoVe1994, and independently by Cai (ref?); see also references.html#CrKpSr1992 CrKpSr1992.The case j=2 was studied by Choi (ref?).The non-scalar diagonal case was treated in references.html#KnSt1997 KnSt1997; the periodic case was studied in [Bo-p3].Note in the periodic case it is possible to have ill-posedness for every regularity, for instance u_t + u_xxx = u^2 u_x^2 is ill-posed in every H^s [Bo-p3]


Benjamin-Ono equation

[Thanks to Nikolay Tzvetkov and Felipe Linares for help with this section - Ed]

The generalized Benjamin-Ono equation BO_a is the scalar equation

u_t + D_x^{1+a} u_x + uu_x = 0

where D_x = sqrt{-Delta} is the positive differentiation operator. When a=1 this is [#kdv KdV]; when a=0 this is the Benjamin-Ono equation (BO) [[references.html#Bj1967 Bj1967]], references.html#On1975 On1975, which models one-dimensional internal waves in deep water. Both of these equations are completely integrable (see e.g. references.html#AbFs1983 AbFs1983, references.html#CoiWic1990 CoiWic1990), though the intermediate cases 0 < a < 1 are not.

When a=0, scaling is s = -1/2, and the following results are known:

When 0 < a < 1, scaling is s = -1/2 - a, and the following results are known:

One can replace the quadratic non-linearity uu_x by higher powers u^{k-1} u_x, in analogy with KdV and gKdV, giving rise to the gBO-k equations (let us take a=0 for sake of discussion).The scaling exponent is 1/2 - 1/(k-1).

  • For k=3, one has GWP for large data in H^1 [KnKoe-p] and LWP for small data in H^s, s > ½ [MlRi-p]
    • For small data in H^s, s>1, LWP was obtained in references.html#KnPoVe1994b KnPoVe1994b
    • With the addition of a small viscosity term, GWP can also be obtained in H^1 by complete integrability methods in [FsLu2000], with asymptotics under the additional assumption that the initial data is in L^1.
    • For s < ½, the solution map is not C^3 [MlRi-p]
  • For k=4, LWP for small data in H^s, s > 5/6 was obtained in references.html#KnPoVe1994b KnPoVe1994b.
  • For k>4, LWP for small data in H^s, s >=3/4 was obtained in references.html#KnPoVe1994b KnPoVe1994b.
  • For any k >= 3 and s < 1/2 - 1/k the solution map is not uniformly continuous [BiLi-p]

The KdV-Benjamin Ono (KdV-BO) equation is formed by combining the linear parts of the KdV and Benjamin-Ono equations together.It is globally well-posed in L^2 references.html#Li1999 Li1999, and locally well-posed in H^{-3/4+} [KozOgTns] (see also [HuoGuo-p] where H^{-1/8+} is obtained).Similarly one can generalize the non-linearity to be k-linear, generating for instance the modified KdV-BO equation, which is locally well-posed in H^{1/4+} [HuoGuo-p].For general gKdV-gBO equations one has local well-posednessin H^3 and above references.html#GuoTan1992 GuoTan1992.One can also add damping terms Hu_x to the equation; this arises as a model for ion-acoustic waves of finite amplitude with linear Landau damping references.html#OttSud1982 OttSud1982.