Korteweg-de Vries equation on T

From DispersiveWiki
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The local and global well-posedness theory for the Korteweg-de Vries equation on the torus is as follows.

  • Scaling is s_c = -3/2.
  • C^0 LWP in H^s for s >= -1, assuming u is real KpTp-p
    • C^0 LWP in H^s for s >= -5/8 follows (at least in principle) from work on the mKdV equation by [Takaoka and Tsutsumi?]
    • Analytic LWP in H^s for s >= -1/2, in the complex case KnPoVe1996. In addition to the usual bilinear estimate, one needs a linear estimate to keep the solution in H^s for t>0.
    • Analytic LWP was proven for s >= 0 in Bo1993b.
    • Analytic ill posedness at s<-1/2, even in the real case Bo1997
      • This has been refined to failure of uniform continuity at s<-1/2 CtCoTa-p
    • Remark: s=-1/2 is the symplectic regularity, and so the machinery of infinite-dimensional symplectic geometry applies once one has a continuous flow, although there are some technicalities involving approximating KdV by a suitable symplectic finite-dimensional flow. In particular one has symplectic non-squeezing CoKeStTkTa-p9, Bo1999.
  • C^0 GWP in H^s for s >= -1, in the real case KpTp-p.
    • Analytic GWP in H^s in the real case for s >= -1/2 CoKeStTkTa2003; see also CoKeStTkTa-p3.
    • A short proof for the s > -3/10 case is in CoKeStTkTa2001
    • Was proven for s >= 0 in Bo1993b.
    • GWP for real initial data which are measures of small norm Bo1997 The small norm restriction is presumably technical.
      • Remark: measures have the same scaling as H^{-1/2}, but neither space includes the other. (Measures are in H^{-1/2-\eps} though).
    • One has GWP for real random data whose Fourier coefficients decay like 1/|k| (times a Gaussian random variable) Bo1995c. Indeed one has an invariant measure.
    • Solitons are asymptotically H^1 stable MtMe-p3, MtMe-p. Indeed, the solution decouples into a finite sum of solitons plus dispersive radiation EckShr1983.