Korteweg-de Vries equation on the half-line

From DispersiveWiki
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The local and global well-posedness theory for the Korteweg-de Vries equation on the half-line is as follows.

  • The KdV Cauchy-boundary problem on the half-line is
u_t + u_{xxx} + u_x + u u_x = 0; u(x,0) = u_0(x); u(0,t) = h(t)

The sign of u_{xxx} is important (it makes the influence of the boundary x=0 mostly negligible), the sign of u u_x is not. The drift term u_x appears naturally from the derivation of KdV from fluid mechanics. (On R, this drift term can be eliminated by a Gallilean transform, but this is not available on the half-line).

  • Because one is restricted to the half-line, it becomes a little tricky to use the Fourier transform. One approach is to use the Fourier-Laplace transform instead.
  • Some compatibility conditions between u_0 and h are needed. The higher the regularity, the more compatibility conditions are needed. If the initial data u_0 is in H^s, then by scaling heuristics the natural space for h is in H^{(s+1)/3}. (Remember that time has dimensions length^3).
  • LWP is known for initial data in H^s and boundary data in H^{(s+1)/3} for s >= 0 [CoKe-p], assuming compatibility. The drift term may be omitted because of the time localization.
    • For s > 3/4 this was proven in BnSuZh-p (assuming that there is no drift term).
    • Was proven for data in sufficiently weighted H^1 spaces in Fa1983.
    • From the real line theory one might expect to lower this to -3/4, but there appear to be technical difficulties with this.
  • GWP is known for initial data in L^2 and boundary data in H^{7/12}, assuming compatibility.
    • for initial data in H^1 and boundary data in H^{5/6}_loc this was proven in BnSuZh-p
    • Was proven for smooth data in BnWi1983