Modified Korteweg-de Vries equation: Difference between revisions

From DispersiveWiki
Jump to navigationJump to search
No edit summary
Line 13: Line 13:
== Miura transform ==
== Miura transform ==


In the defocusing case, the ''Miura transformation'' v = <span class="SpellE">u_x</span> + u^2 transforms a solution of <span class="SpellE">defocussing</span> <span class="SpellE">mKdV</span> to a solution of [#kdv <span class="SpellE">KdV</span>]
In the defocusing case, the ''Miura transformation'' <math> v = \partial_x u + u^2 </math> transforms a solution of <span class="SpellE">defocussing</span> <span class="SpellE">mKdV</span> to a solution of [#kdv <span class="SpellE">KdV</span>]


<center><span class="SpellE">v_t</span> + <span class="SpellE">v_xxx</span> = 6 v <span class="SpellE">v_x</span>.</center>
<center><span class="SpellE">v_t</span> + <span class="SpellE">v_xxx</span> = 6 v <span class="SpellE">v_x</span>.</center>

Revision as of 19:20, 28 July 2006

The (defocusing) modified Korteweg-de Vries (mKdV) equation is

It is completely integrable, and has infinitely many conserved quantities. Indeed, for each non-negative integer k, there is a conserved quantity which is roughly equivalent to the H^k norm of u. This equation has been studied on the line, on the circle, and on the half-line.

The focussing mKdV

is very similar, but admits soliton solutions.

Miura transform

In the defocusing case, the Miura transformation transforms a solution of defocussing mKdV to a solution of [#kdv KdV]

v_t + v_xxx = 6 v v_x.

Thus one expects the LWP and GWP theory for mKdV to be one derivative higher than that for KdV.

In the focusing case, the Miura transform is now v = u_x + i u^2. This transforms focussing mKdV to complex-valued KdV, which is a slightly less tractable equation. (However, the transformed solution v is still real in the highest order term, so in principle the real-valued theory carries over to this case).

The Miura transformation can be generalized. If v and w solve the system

v_t + v_xxx = 6(v^2 + w) v_x
w_t + w_xxx = 6(v^2 + w) w_x

Then u = v^2 + v_x + w is a solution of KdV. In particular, if a and b are constants and v solves

v_t + v_xxx = 6(a^2 v^2 + bv) v_x

then u = a^2 v^2 + av_x + bv solves KdV (this is the Gardener transform).