# Difference between revisions of "Modified Korteweg-de Vries on R"

From DispersiveWiki

Jump to navigationJump to searchm |
|||

Line 10: | Line 10: | ||

** Global weak solutions in L^2 were constructed in [[Ka1983]]. Thus in L^2 one has global existence but no uniform continuity. | ** Global weak solutions in L^2 were constructed in [[Ka1983]]. Thus in L^2 one has global existence but no uniform continuity. | ||

** Uniqueness is also known when the initial data lies in the weighted space <x>^{3/8} u_0 in L^2 [[GiTs1989]] | ** Uniqueness is also known when the initial data lies in the weighted space <x>^{3/8} u_0 in L^2 [[GiTs1989]] | ||

− | ** LWP has also been demonstrated when <math><\xi> ^s \hat{u_0}</math> lies in <math>L^{r}</math> for 4/3 < r <= 2 and s >= ½ - 1/2r [[Gr-p4]] | + | ** LWP has also been demonstrated when <math><\xi> ^s \hat{u_0}</math> lies in <math>L^{r/(r-1)}</math> for 4/3 < r <= 2 and s >= ½ - 1/2r [[Gr-p4]] |

* GWP in <span class="SpellE">H^s</span> for s > 1/4 [[CoKeStTkTa2003]], via the <span class="SpellE">KdV</span> theory and the Miura transform, for both the <span class="SpellE">focussing</span> and <span class="SpellE">defocussing</span> cases. | * GWP in <span class="SpellE">H^s</span> for s > 1/4 [[CoKeStTkTa2003]], via the <span class="SpellE">KdV</span> theory and the Miura transform, for both the <span class="SpellE">focussing</span> and <span class="SpellE">defocussing</span> cases. | ||

** Was proven for s>3/5 in [[FoLiPo1999]] | ** Was proven for s>3/5 in [[FoLiPo1999]] |

## Revision as of 00:45, 17 March 2007

The local and global well-posedness theory for the modified Korteweg-de Vries equation on the line and half-line is as follows.

- Scaling is s_c = -1/2.
- LWP in H^s for s >= 1/4 KnPoVe1993
- Was shown for s>3/2 in GiTs1989
- This is sharp in the focusing case KnPoVe2001, in the sense that the solution map is no longer uniformly continuous for s < 1/4.
- The same result has also been established for the half-line CoKn-p, assuming boundary data is in H^{(s+1)/3} of course.
- Global weak solutions in L^2 were constructed in Ka1983. Thus in L^2 one has global existence but no uniform continuity.
- Uniqueness is also known when the initial data lies in the weighted space <x>^{3/8} u_0 in L^2 GiTs1989
- LWP has also been demonstrated when lies in for 4/3 < r <= 2 and s >= ½ - 1/2r Gr-p4

- GWP in H^s for s > 1/4 CoKeStTkTa2003, via the KdV theory and the Miura transform, for both the focussing and defocussing cases.
- Was proven for s>3/5 in FoLiPo1999
- Is implicit for s >= 1 from KnPoVe1993
- On the half-line GWP is known when s >= 1 and the boundary data is in H^{11/12}, assuming compatibility and small L^2 norm CoKn-p
- GWP for smooth data can also be achieved from inverse scattering methods BdmFsShp-p; the same approach also works on an interval BdmShp-p.
- Solitons are asymptotically H^1 stable MtMe-p3, MtMe-p