Modified Korteweg-de Vries on R

From DispersiveWiki
Revision as of 03:13, 31 July 2006 by Pblue (talk | contribs) (Cleaning bibliographic references)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
The local and global well-posedness theory for the modified Korteweg-de Vries equation on the line and half-line is as follows.
  • Scaling is s_c = -1/2.
  • LWP in H^s for s >= 1/4 KnPoVe1993
    • Was shown for s>3/2 in GiTs1989
    • This is sharp in the focussing case KnPoVe-p, in the sense that the solution map is no longer uniformly continuous for s < 1/4.
      • This has been extended to the defocussing case in [CtCoTa-p], by a high-frequency approximation of mKdV by [schrodinger.html#Cubic NLS on R NLS]. (This high frequency approximation has also been utilized in Sch1998).
      • Below 1/4 the solution map was known to not be C^3 in Bo1993b, Bo1997.
    • The same result has also been established for the half-line [CoKe-p], assuming boundary data is in H^{(s+1)/3} of course.
    • Global weak solutions in L^2 were constructed in Ka1983. Thus in L^2 one has global existence but no uniform continuity.
    • Uniqueness is also known when the initial data lies in the weighted space <x>^{3/8} u_0 in L^2 GiTs1989
    • LWP has also been demonstrated when <xi>^s hat(u_0) lies in L^{r\u2019} for 4/3 < r <= 2 and s >= ½ - 1/2r [Gr-p4]
  • GWP in H^s for s > 1/4 CoKeStTkTa-p2, via the KdV theory and the Miura transform, for both the focussing and defocussing cases.
    • Was proven for s>3/5 in FoLiPo1999
    • Is implicit for s >= 1 from KnPoVe1993
    • On the half-line GWP is known when s >= 1 and the boundary data is in H^{11/12}, assuming compatibility and small L^2 norm [CoKe-p]
    • GWP for smooth data can also be achieved from inverse scattering methods [BdmFsShp-p]; the same approach also works on an interval [BdmShp-p].
    • Solitons are asymptotically H^1 stable [MtMe-p3], [MtMe-p]