Non-relativistic limit

From DispersiveWiki
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The non-relativistic limit of a relativistic equation (which thus involves the speed of light 'c') denotes the limit when . It is the opposite of the vanishing dispersion limit.

Non-relativistic limit of NLKG

By inserting a parameter (the speed of light), one can rewrite the nonlinear Klein-Gordon equation as

.

One can then ask for what happens in the non-relativistic limit (keeping the initial position fixed, and dealing with the initial velocity appropriately). In Fourier space, should be localized near the double hyperboloid

.

In the non-relativistic limit this becomes two paraboloids

and so one expects to resolve as

where , solve some suitable NLS.

A special case arises if one assumes to be small at time zero (say in some Sobolev norm). Then one expects to vanish and to get a scalar NLS. Many results of this nature exist, see Mac-p, Nj1990, Ts1984, MacNaOz-p, Na-p. In more general situations one expects and to evolve by a coupled NLS; see MasNa2002.

Heuristically, the frequency portion of the evolution should evolve in a Schrodinger-type manner, while the frequency portion of the evolution should evolve in a wave-type manner. (This is consistent with physical intuition, since frequency is proportional to momentum, and hence (in the nonrelativistic regime) to velocity).

A similar non-relativistic limit result holds for the Maxwell-Klein-Gordon system (in the Coulomb gauge), where the limiting equation is a coupled Schrodinger-Poisson system under reasonable hypotheses on the initial data BecMauSb-p. The asymptotic relation between the MKG-CG fields , , and the Schrodinger-Poisson fields u, v^+, v^- are

where (a variant of ).