Wave maps on R

From DispersiveWiki
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
  • Scaling is s_c = 1/2.
  • LWP in H^s for s > 1/2 (KeTa1998b)
    • Proven for s \geq 1 in (Zh1999)
    • Proven for s > 3/2 by energy methods.
    • One also has LWP in the space L^1_1 (KeTa1998b). Interpolants of this with the H^s results are probably possible.
    • One has ill-posedness for H^{1/2}, and similarly for Besov spaces near H^{1/2} such as B^{1/2,1}_2 Na1999, Ta2000. However, the ill-posedness is not an instance of blowup, only of a discontinuous solution map, and perhaps a weaker notion of solution still exists and is unique.
  • GWP in H^s for s>3/4 KeTa1998b when the target manifold is a sphere using the I-method.
    • Was proven for s \geq 1 in Zh1999 for general manifolds
    • Was proven for s \geq 2 for general manifolds in Gu1980, LaSh1981, GiVl1982, Sa1988
    • One also has GWP and scattering in L^1_1 (KeTa1998b). One probably also has asymptotic completeness.
    • Scattering fails when the initial velocity is not conditionally integrable KeTa1998b.
    • It should be possible to improve the s>3/4 result by correction term methods, and perhaps to obtain interpolants with the L^{1,1} result. One should also be able to extend to general manifolds.
  • Remark: The non-linear term has absolutely no smoothing properties, because of the double derivative in the non-linearity and the lack of dispersion in the one-dimensional case.
  • Remark: The equation is completely integrable (Pm1976), but differs slightly from the KdV, mKdV or 1D NLS in that the additional conserved quantities do not control H^s norms, but rather the pointwise distribution of the energy. Indeed, the energy density itself obeys the free wave equation!
  • When the target is a symmetric space, homoclinic periodic multisoliton solutions were constructed in TeUh-p2.
  • Remark: When the target manifold is S2, the wave map equation is related to the sine-Gordon equation (Pm1976). Homoclinic periodic breather solutions were constructed in SaSr1996.
  • When the target is a Lorentzian manifold, local existence for smooth solutions was established in Cq-p2.A criterion on the target manifold to guarantee global existence of smooth solutions is in Woo-p; however if the target manifold is the Lorentz sphere S^{1,n-1} then there is a large class of data which blows up Woo-p.