Zakharov system

From DispersiveWiki
Revision as of 05:03, 27 July 2006 by Tao (talk | contribs) (raw file (needs much cleanup))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The Zakharov system

The Zakharov system consists of a complex field u and a real field n which evolve according to the equations

i u_t + D u = un Box n = -(|u|2)xx

thus u evolves according to a coupled Schrodinger equation, while n evolves according to a coupled wave equation. We usually place the initial data u(0) in H^{s0}, the initial position n(0) in H^{s1}, and the initial velocity nt(0) in H^{s1-1} for some real s0, s1.

This system is a model for the propagation of Langmuir turbulence waves in an unmagnetized ionized plasma [Zk1972]. Heuristically, u behaves like a solution cubic NLS, smoothed by 1/2 a derivative. If one sends the speed of light in Box to infinity, one formally recovers the cubic nonlinear Schrodinger equation. Local existence for smooth data – uniformly in the speed of light! - was established in [KnPoVe1995b] by energy and gauge transform methods; this was generalized to non-scalar situations in [Lau-p], [KeWg1998].

An obvious difficulty here is the presence of two derivatives in the non-linearity for n. To recover this large loss of derivatives one needs to use the separation between the paraboloid t = x2 and the light cone |t| = |x|.

There are two conserved quantities: the L2 norm of u

ò |u|2

and the energy

ò |ux|2 + |n|2/2 + |D-1x nt|2/2 + n |u|2.

The non-quadratic term n|u|2 in the energy becomes difficult to control in three and higher dimensions. Ignoring this part, one needs regularity in (1,0) to control the energy.

Zakharov systems do not have a true scale invariance, but the critical regularity is (s0,s1) = ((d-3)/2, (d-2)/2). In dimensions d³4 LWP is known on Rd with an e of this value [GiTsVl1997]. For the lower dimensional cases, see below.