Nonlinear Schrodinger-Airy system: Difference between revisions

From DispersiveWiki
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 1: Line 1:
The ''nonlinear Schrodinger-Airy system''
The ''nonlinear Schrodinger-Airy system''


<center><span class="SpellE">u_t</span> + <span class="SpellE">i</span> c <span class="SpellE">u_xx</span> + <span class="SpellE">u_xxx</span> = <span class="SpellE">i</span> gamma |u|^2 u + delta |u|^2 <span class="SpellE">u_x</span> + epsilon u^2 <span class="SpellE"><u>u</u>_x</span></center>
<center><math>\partial_t u  + i c \partial_x^2 u + \partial_x^3 u = i \gamma |u|^2 u + \delta |u|^2 \partial_x u + \epsilon u^2 \partial_x u </math></center>


<span class="GramE">on</span> R is a combination of the [[nls-3 on R|cubic NLS equation]], the [[dnls-3 on R|derivative cubic NLS equation]], [[modified Korteweg-de Vries on R|complex mKdV]], and a cubic nonlinear [[Airy equation]].  This equation is a general model for <span class="SpellE">propogation</span> of pulses in an optical fiber [[references.html#Kod1985 Kod1985]], [[references.html#HasKod1987 HasKod1987]]
<span class="GramE">on</span> R is a combination of the [[nls-3 on R|cubic NLS equation]], the [[dnls-3 on R|derivative cubic NLS equation]], [[modified Korteweg-de Vries on R|complex mKdV]], and a cubic nonlinear [[Airy equation]].  This equation is a general model for <span class="SpellE">propogation</span> of pulses in an optical fiber [[references.html#Kod1985 Kod1985]], [[references.html#HasKod1987 HasKod1987]]

Revision as of 15:17, 28 July 2006

The nonlinear Schrodinger-Airy system

on R is a combination of the cubic NLS equation, the derivative cubic NLS equation, complex mKdV, and a cubic nonlinear Airy equation. This equation is a general model for propogation of pulses in an optical fiber references.html#Kod1985 Kod1985, references.html#HasKod1987 HasKod1987

·When c=delta=epsilon = 0, scaling is s=-1.When c=gamma=0, scaling is –1/2.

·LWP is known when s >= ¼ references.html#St1997d St1997d

oFor s > ¾ this is in references.html#Lau1997 Lau1997, references.html#Lau2001 Lau2001

oThe s>=1/4 result is also known when c is a time-dependent function [Cv2002], [CvLi2003]

oFor s < -1/4 and delta or epsilon non-zero, the solution map is not C^3 [CvLi-p]

oWhen delta = epsilon = 0 LWP is known for s > -1/4 references.html#Cv2004 Cv2004

§For s < -1/4 the solution map is not C^3 [CvLi-p]