Modified Korteweg-de Vries equation: Difference between revisions

From DispersiveWiki
Jump to navigationJump to search
Line 19: Line 19:
Thus one expects the LWP and GWP theory for <span class="SpellE">mKdV</span> to be one derivative higher than that for <span class="SpellE">KdV</span>.
Thus one expects the LWP and GWP theory for <span class="SpellE">mKdV</span> to be one derivative higher than that for <span class="SpellE">KdV</span>.


In the focusing case, the Miura transform is now v = <span class="SpellE">u_x</span> + <span class="SpellE">i</span> u^2. This transforms <span class="SpellE">focussing</span> <span class="SpellE">mKdV</span> to ''complex-valued'' <span class="SpellE">KdV</span>, which is a slightly less tractable equation. (However, the transformed solution v is still real in the highest order term, so in principle the real-valued theory carries over to this case).
In the focusing case, the Miura transform is now <math>v = \partial_x u + i u^2</math>. This transforms <span class="SpellE">focussing</span> <span class="SpellE">mKdV</span> to ''complex-valued'' <span class="SpellE">KdV</span>, which is a slightly less tractable equation. (However, the transformed solution v is still real in the highest order term, so in principle the real-valued theory carries over to this case).


The Miura transformation can be generalized. If v and w solve the system
The Miura transformation can be generalized. If v and w solve the system

Revision as of 19:24, 28 July 2006

The (defocusing) modified Korteweg-de Vries (mKdV) equation is

It is completely integrable, and has infinitely many conserved quantities. Indeed, for each non-negative integer k, there is a conserved quantity which is roughly equivalent to the H^k norm of u. This equation has been studied on the line, on the circle, and on the half-line.

The focussing mKdV

is very similar, but admits soliton solutions.

Miura transform

In the defocusing case, the Miura transformation transforms a solution of defocussing mKdV to a solution of [#kdv KdV]

.

Thus one expects the LWP and GWP theory for mKdV to be one derivative higher than that for KdV.

In the focusing case, the Miura transform is now . This transforms focussing mKdV to complex-valued KdV, which is a slightly less tractable equation. (However, the transformed solution v is still real in the highest order term, so in principle the real-valued theory carries over to this case).

The Miura transformation can be generalized. If v and w solve the system

v_t + v_xxx = 6(v^2 + w) v_x
w_t + w_xxx = 6(v^2 + w) w_x

Then u = v^2 + v_x + w is a solution of KdV. In particular, if a and b are constants and v solves

v_t + v_xxx = 6(a^2 v^2 + bv) v_x

then u = a^2 v^2 + av_x + bv solves KdV (this is the Gardener transform).