Modified Korteweg-de Vries equation: Difference between revisions
Line 23: | Line 23: | ||
The Miura transformation can be generalized. If v and w solve the system | The Miura transformation can be generalized. If v and w solve the system | ||
<center>< | <center><math>\partial_t v + \partial_x^3 v = 6(v^2 + w) \partial_x v</math><br /><span class="SpellE">w_t</span> + <span class="SpellE">w_xxx</span> = 6(v^2 + w) <span class="SpellE">w_x</span></center> | ||
Then u = v^2 + <span class="SpellE">v_x</span> + w is a solution of <span class="SpellE">KdV</span>. In particular, if a and b are constants and v solves | Then u = v^2 + <span class="SpellE">v_x</span> + w is a solution of <span class="SpellE">KdV</span>. In particular, if a and b are constants and v solves |
Revision as of 19:26, 28 July 2006
The (defocusing) modified Korteweg-de Vries (mKdV) equation is
It is completely integrable, and has infinitely many conserved quantities. Indeed, for each non-negative integer k, there is a conserved quantity which is roughly equivalent to the H^k norm of u. This equation has been studied on the line, on the circle, and on the half-line.
The focussing mKdV
is very similar, but admits soliton solutions.
Miura transform
In the defocusing case, the Miura transformation transforms a solution of defocussing mKdV to a solution of [#kdv KdV]
Thus one expects the LWP and GWP theory for mKdV to be one derivative higher than that for KdV.
In the focusing case, the Miura transform is now . This transforms focussing mKdV to complex-valued KdV, which is a slightly less tractable equation. (However, the transformed solution v is still real in the highest order term, so in principle the real-valued theory carries over to this case).
The Miura transformation can be generalized. If v and w solve the system
w_t + w_xxx = 6(v^2 + w) w_x
Then u = v^2 + v_x + w is a solution of KdV. In particular, if a and b are constants and v solves
then u = a^2 v^2 + av_x + bv solves KdV (this is the Gardener transform).