Schrodinger:quadratic NLS: Difference between revisions

From DispersiveWiki
Jump to navigationJump to search
Line 78: Line 78:
====Quadratic NLS on <math>T^3</math>====
====Quadratic NLS on <math>T^3</math>====


* If the quadratic non-linearity is of <math>\underlina{uu}\,</math> type then one can obtain LWP for <math>s > -3/10\,.</math> [[references#Gr-p2 Gr-p2]]
* If the quadratic non-linearity is of <math>\underline{uu}\,</math> type then one can obtain LWP for <math>s > -3/10\,.</math> [[references#Gr-p2 Gr-p2]]


<div class="MsoNormal" style="text-align: center"><center>
<div class="MsoNormal" style="text-align: center"><center>

Revision as of 21:11, 29 July 2006

Quadratic NLS

Equations of the form

which a quadratic function of its arguments are quadratic nonlinear Schrodinger equations.


Quadratic NLS on R

  • Scaling is
  • For any quadratic non-linearity one can obtain LWP for CaWe1990, Ts1987.
  • If the quadratic non-linearity is of or type then one can push LWP to KnPoVe1996b.
    • This can be improved to the Besov space [MurTao-p]. The bilinear estimates fail for references:NaTkTs-p NaTkTs2001.
  • If the quadratic non-linearity is of type then one can push LWP to KnPoVe1996b.
  • Since these equations do not have conservation it is not clear whether there is any reasonable GWP result, except possibly for very small data.
  • If the non-linearity is then there is GWP in thanks to conservation, and ill-posedness below by Gallilean invariance considerations in both the focusing [KnPoVe-p] and defocusing [CtCoTa-p2] cases.

Quadratic NLS on

  • For any quadratic non-linearity one can obtain LWP for Bo1993. In the Hamiltonian case () this is sharp by Gallilean invariance considerations [KnPoVe-p]
  • If the quadratic non-linearity is of or type then one can push LWP to KnPoVe1996b.
  • In the Hamiltonian case (a non-linearity of type ) we have GWP for by conservation. In the other cases it is not clear whether there is any reasonable GWP result, except possibly for very small data.

Quadratic NLS on

  • Scaling
  • For any quadratic non-linearity one can obtain LWP for CaWe1990, Ts1987.
    • In the Hamiltonian case () this is sharp by Gallilean invariance considerations [KnPoVe-p]
  • If the quadratic non-linearity is of or type then one can push LWP to St1997, references:CoDeKnSt-p CoDeKnSt-p.
    • This can be improved to the Besov space [MurTao-p].
  • If the quadratic non-linearity is of type then one can push LWP to references:Ta-p2 Ta-p2.
  • In the Hamiltonian case (a non-linearity of type ) we have GWP for by conservation. In the other cases it is not clear whether there is any reasonable GWP result, except possibly for very small data.
    • Below we have ill-posedness by Gallilean invariance considerations in both the focusing [KnPoVe-p] and defocusing [CtCoTa-p2] cases.

Quadratic NLS on T^2

  • If the quadratic non-linearity is of type then one can obtain LWP for references#Gr-p2 Gr-p2

Quadratic NLS on

  • Scaling is
  • For any quadratic non-linearity one can obtain LWP for CaWe1990, Ts1987.
  • If the quadratic non-linearity is of or type then one can push LWP to St1997, references:CoDeKnSt-p CoDeKnSt-p.
  • If the quadratic non-linearity is of type then one can push LWP to references:Ta-p2 Ta-p2.
  • In the Hamiltonian case (a non-linearity of type ) we have GWP for by conservation. In the other cases it is not clear whether there is any reasonable GWP result, except possibly for very small data.
    • Below we have ill-posedness by Gallilean invariance considerations in both the focusing [KnPoVe-p] and defocusing [CtCoTa-p2] cases.

Quadratic NLS on

  • If the quadratic non-linearity is of type then one can obtain LWP for references#Gr-p2 Gr-p2