Pseudoconformal Transformation: Difference between revisions

From DispersiveWiki
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
The pseudoconformal transformation
The pseudoconformal transformation


<math> u(t,x) \to v(\tau, y) = \frac{|\tau|^{-\frac{d}{2}} e^{\frac{i |y|^2}{4t}} u ( - \frac{1}{\tau} , \frac{y}{\tau}) </math>
<math> u(t,x) \to v(\tau, y) = |\tau|^{-\frac{d}{2}} e^{\frac{i |y|^2}{4t}} u ( - \frac{1}{\tau} , \frac{y}{\tau}) </math>


maps solutions of the [[Mass critical NLS|mass critical NLS]] to solutions. The pseudoconformal image of a [[Soliton|soliton]] is an explicit [[Blowup solution|blowup solution]]. The pseudoconformal transformation is an isometry on <math>L^2_x</math> and on <math>L^2</math>-admissible [[Strichartz estimates|Strichartz spaces]] <math>L^q_\tau L^r_y</math>.
maps solutions of the [[Mass critical NLS|mass critical NLS]] to solutions. The pseudoconformal image of a [[Soliton|soliton]] is an explicit [[Blowup solution|blowup solution]]. The pseudoconformal transformation is an isometry on <math>L^2_x</math> and on <math>L^2</math>-admissible [[Strichartz estimates|Strichartz spaces]] <math>L^q_\tau L^r_y</math>.

Revision as of 02:04, 31 July 2006

The pseudoconformal transformation

maps solutions of the mass critical NLS to solutions. The pseudoconformal image of a soliton is an explicit blowup solution. The pseudoconformal transformation is an isometry on and on -admissible Strichartz spaces .