Pseudoconformal Transformation: Difference between revisions
From DispersiveWiki
Jump to navigationJump to search
No edit summary |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
The pseudoconformal transformation | The pseudoconformal transformation | ||
<math> u(t,x) \to v(\tau, y) = | <math> u(t,x) \to v(\tau, y) = |\tau|^{-\frac{d}{2}} e^{\frac{i |y|^2}{4t}} u ( - \frac{1}{\tau} , \frac{y}{\tau}) </math> | ||
maps solutions of the [[Mass critical NLS|mass critical NLS]] to solutions. The pseudoconformal image of a [[Soliton|soliton]] is an explicit [[Blowup solution|blowup solution]]. The pseudoconformal transformation is an isometry on <math>L^2_x</math> and on <math>L^2</math>-admissible [[Strichartz estimates|Strichartz spaces]] <math>L^q_\tau L^r_y</math>. | maps solutions of the [[Mass critical NLS|mass critical NLS]] to solutions. The pseudoconformal image of a [[Soliton|soliton]] is an explicit [[Blowup solution|blowup solution]]. The pseudoconformal transformation is an isometry on <math>L^2_x</math> and on <math>L^2</math>-admissible [[Strichartz estimates|Strichartz spaces]] <math>L^q_\tau L^r_y</math>. | ||
[[Category:Schrodinger]] | |||
[[Category:Transforms]] |
Latest revision as of 06:39, 31 July 2006
The pseudoconformal transformation
maps solutions of the mass critical NLS to solutions. The pseudoconformal image of a soliton is an explicit blowup solution. The pseudoconformal transformation is an isometry on and on -admissible Strichartz spaces .