Korteweg-de Vries equation on R: Difference between revisions

From DispersiveWiki
Jump to navigationJump to search
No edit summary
No edit summary
Line 17: Line 17:
** Was proven for s>= 0 in [[Bo1993b]]. Global weak solutions in L^2 were constructed in [[Ka1983]], [[KrFa1983]], and were shown to obey the expected local smoothing estimate. These weak solutions were shown to be unique in [[Zh1997b]]
** Was proven for s>= 0 in [[Bo1993b]]. Global weak solutions in L^2 were constructed in [[Ka1983]], [[KrFa1983]], and were shown to obey the expected local smoothing estimate. These weak solutions were shown to be unique in [[Zh1997b]]
** Was proven for s>= 1 in [[KnPoVe1993]].
** Was proven for s>= 1 in [[KnPoVe1993]].
** Was proven for s>= 2 in [[BnSm1975]], [[Ka1975]], [[Ka1979]], ....
** Was proven for s>= 2 in [[BnSmr1975]], [[Ka1975]], [[Ka1979]], ....
** ''Remark'': In the complex setting GWP fails for large data with Fourier support on the half-line [Bona-Winther?], [Birnir?], ????. This result extends to a wide class of [[dispersive]] PDE.
** ''Remark'': In the complex setting GWP fails for large data with Fourier support on the half-line [Bona-Winther?], [Birnir?], ????. This result extends to a wide class of [[dispersive]] PDE.
* By use of the inverse scattering transform one can show that smooth solutions eventually resolve into <span class="SpellE">solitons</span>, that two colliding <span class="SpellE">solitons</span> emerge as (slightly phase shifted) <span class="SpellE">solitons</span>, etc.
* By use of the inverse scattering transform one can show that smooth solutions eventually resolve into <span class="SpellE">solitons</span>, that two colliding <span class="SpellE">solitons</span> emerge as (slightly phase shifted) <span class="SpellE">solitons</span>, etc.

Revision as of 23:29, 14 August 2006

The local and global well-posedness theory for the Korteweg-de Vries equation on the real line is as follows.

  • Scaling is s_c = -3/2.
  • LWP in H^s for s >= -3/4 [CtCoTa-p], using a modified Miura transform and the [#mKdV_on_R mKdV theory]. This is despite the failure of the key bilinear estimate NaTkTs2001
  • GWP in H^s for s > -3/4 (if u is real) CoKeStTkTa2003.
    • Was proven for s > -3/10 in CoKeStTkTa2001
    • Was proven for s>= 0 in Bo1993b. Global weak solutions in L^2 were constructed in Ka1983, KrFa1983, and were shown to obey the expected local smoothing estimate. These weak solutions were shown to be unique in Zh1997b
    • Was proven for s>= 1 in KnPoVe1993.
    • Was proven for s>= 2 in BnSmr1975, Ka1975, Ka1979, ....
    • Remark: In the complex setting GWP fails for large data with Fourier support on the half-line [Bona-Winther?], [Birnir?], ????. This result extends to a wide class of dispersive PDE.
  • By use of the inverse scattering transform one can show that smooth solutions eventually resolve into solitons, that two colliding solitons emerge as (slightly phase shifted) solitons, etc.
  • Solitons are orbitally H^1 stable Bj1972
    • In H^s, 0 <= s < 1, the orbital stability of solitons is at most polynomial (the distance to the ground state manifold in H^s norm grows like at most O(t^{1-s+}) in time) RaySt-p
    • In L^2, orbital stability has been obtained in MeVe2003.

KdV-like systems

The KdV equation can also be generalized to a 2x2 system


where b_1,b_2 are positive constants and a_1,a_2,a_3,r are real constants. This system was introduced in GeaGr1984 to study strongly interacting pairs of weakly nonlinear long waves, and studied further in BnPoSauTm1992. In AsCoeWgg1996 it was shown that this system was also globally well-posed on L^2.
It is an interesting question as to whether these results can be pushed further to match the KdV theory; the apparent lack of complete integrability in this system (for generic choices of parameters b_i, a_i, r) suggests a possible difficulty.