|
|
(10 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
| The ''nonlinear Schrodinger-Airy system'' | | The '''nonlinear Schrodinger-Airy system''' |
|
| |
|
| <center><math>\partial_t u + i c \partial_x^2 u + \partial_x^3 u = i \gamma |u|^2 u + \delta |u|^2 \partial_x u + \epsilon u^2 \partial_x u </math></center> | | <center><math>\partial_t u + i c \partial_x^2 u + \partial_x^3 u = i \gamma |u|^2 u + \delta |u|^2 \partial_x u + \epsilon u^2 \partial_x u </math></center> |
|
| |
|
| <span class="GramE">on</span> R is a combination of the [[nls-3 on R|cubic NLS equation]], the [[dnls-3 on R|derivative cubic NLS equation]], [[modified Korteweg-de Vries on R|complex mKdV]], and a cubic nonlinear [[Airy equation]]. This equation is a general model for <span class="SpellE">propogation</span> of pulses in an optical fiber [[references.html#Kod1985 Kod1985]], [[references.html#HasKod1987 HasKod1987]]
| | on '''R''' is a combination of the [[cubic nls|cubic NLS equation]], the [[cubic DNLS on R|derivative cubic NLS equation]], [[modified Korteweg-de Vries on R|complex mKdV]], and a cubic nonlinear [[Airy equation]]. This equation is a general model for propagation of pulses in an optical fiber [[Kod1985]], [[HasKod1987]]. |
|
| |
|
| <span style="mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol"><font face="Symbol"><span style="mso-list: Ignore">·</span></font></span>When c=delta=epsilon = 0, scaling is s=-1.When c=gamma=0, scaling is –1/2. | | When <math>c=\delta=\epsilon = 0\,</math>, scaling is <math>s=-1\,</math>.When <math>c=\gamma=0\,</math>, scaling is -1/2. |
|
| |
|
| <span style="mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol"><font face="Symbol"><span style="mso-list: Ignore">·</span></font></span>LWP is known when s >= ¼ [[references.html#St1997d St1997d]] | | LWP is known when <math>s \geq 1/4\,</math>. [[St1997d]] |
|
| |
|
| <span style="mso-fareast-font-family: "Courier New""><font face=""Courier New""><span style="mso-list: Ignore">o</span></font></span>For s > ¾ this is in [[references.html#Lau1997 Lau1997]], [[references.html#Lau2001 Lau2001]] | | For <math>s > 3/4\,</math> this is in [[Lau1997]], [[Lau2001]] |
|
| |
|
| <span style="mso-fareast-font-family: "Courier New""><font face=""Courier New""><span style="mso-list: Ignore">o</span></font></span>The s>=1/4 result is also known when c is a time-dependent function [Cv2002], [CvLi2003] | | The <math>s\geq1/4 \,</math> result is also known when <math>c</math> is a time-dependent function [[Cv2002]], [[CvLi2003]] |
|
| |
|
| <span style="mso-fareast-font-family: "Courier New""><font face=""Courier New""><span style="mso-list: Ignore">o</span></font></span>For s < -1/4 and delta or epsilon non-zero, the solution map is not C^3 [<span class="SpellE">CvLi</span>-p] | | For <math>s < -1/4\,</math> and <math>\delta\,</math> or <math>\epsilon\,</math> non-zero, the solution map is not <math>C^3</math>. |
|
| |
|
| <span style="mso-fareast-font-family: "Courier New""><font face=""Courier New""><span style="mso-list: Ignore">o</span></font></span>When delta = epsilon = 0 LWP is known for s > -1/4 [[references.html#Cv2004 Cv2004]] | | When <math>\delta = \epsilon = 0\,</math> LWP is known for <math>s > -1/4\,</math> [[Cv2004]] |
|
| |
|
| <span style="mso-fareast-font-family: Wingdings; mso-bidi-font-family: Wingdings"><font face="Wingdings"><span style="mso-list: Ignore">§</span></font></span>For s < -1/4 the solution map is not C^3 [<span class="SpellE">CvLi</span>-p] | | For <math>s < -1/4\,</math> the solution map is not <math>C^3\,</math> [[CvLi-p]] |
|
| |
|
| [[Category:Equations]] | | [[Category:Equations]] |
| | [[Category:Schrodinger]] |
| | [[Category:Airy]] |
The nonlinear Schrodinger-Airy system
on R is a combination of the cubic NLS equation, the derivative cubic NLS equation, complex mKdV, and a cubic nonlinear Airy equation. This equation is a general model for propagation of pulses in an optical fiber Kod1985, HasKod1987.
When , scaling is .When , scaling is -1/2.
LWP is known when . St1997d
For this is in Lau1997, Lau2001
The result is also known when is a time-dependent function Cv2002, CvLi2003
For and or non-zero, the solution map is not .
When LWP is known for Cv2004
For the solution map is not CvLi-p