Schrodinger estimates: Difference between revisions
(6 intermediate revisions by 3 users not shown) | |||
Line 25: | Line 25: | ||
**** When <math>d=1\,</math> one can refine the <math>L^2\,</math> assumption on the data in rather technical ways on the Fourier side, see e.g. [[VaVe2001]]. | **** When <math>d=1\,</math> one can refine the <math>L^2\,</math> assumption on the data in rather technical ways on the Fourier side, see e.g. [[VaVe2001]]. | ||
**** When <math>d=1\,,</math> the <math>L^6_{t,x}</math> estimate has a maximizer [[Kz-p2]]. This maximizer is in fact given by Gaussian beams, with a constant of <math>12^{-1/12}\,</math> [[Fc-p4]]. Similarly when <math>d=2\,</math> with the <math>L^4\,</math> estimate, which is also given by Gaussian beams with a constant of <math>2^{-1/2}\,.</math> | **** When <math>d=1\,,</math> the <math>L^6_{t,x}</math> estimate has a maximizer [[Kz-p2]]. This maximizer is in fact given by Gaussian beams, with a constant of <math>12^{-1/12}\,</math> [[Fc-p4]]. Similarly when <math>d=2\,</math> with the <math>L^4\,</math> estimate, which is also given by Gaussian beams with a constant of <math>2^{-1/2}\,.</math> | ||
** (Kato estimates) <math>D^{1/2}\,</math> <math>f \in L^2_{x,loc}L^2_t</math> [[Sl1987]], [[Ve1988]]. | ** (Kato estimates) When <math>d > 1</math>, <math>D^{1/2}\,</math> <math>f \in L^2_{x,loc}L^2_t</math> [[Sl1987]], [[Ve1988]], [[ConSau1988]]. | ||
*** When <math>d=1\,</math> | *** When <math>d=1\,</math> we instead have <math>\dot D^{1/2}\,</math> <math>f \in L^\infty_xL^2_t.</math> | ||
** (Maximal function estimates) In all dimensions one has <math>D^{-s} f \in L^2_{x,loc}L^\infty_t</math> for all <math>s > 1/2.\,</math> | ** (Maximal function estimates) In all dimensions one has <math>D^{-s} f \in L^2_{x,loc}L^\infty_t</math> for all <math>s > 1/2.\,</math> | ||
*** When <math>d=1\,</math> one also has <math>D^{-1/4}\,</math> <math>f \in L^4_{x}L^\infty_t.</math> | *** When <math>d=1\,</math> one also has <math>D^{-1/4}\,</math> <math>f \in L^4_{x}L^\infty_t.</math> | ||
Line 56: | Line 56: | ||
<center><math>\| uv \|_{X^{1/2+, 0}} \leq \| u \|_{X^{1/2+, 1/2+}} \| v \|_{X^{0+, 1/2+}}</math></center> | <center><math>\| uv \|_{X^{1/2+, 0}} \leq \| u \|_{X^{1/2+, 1/2+}} \| v \|_{X^{0+, 1/2+}}</math></center> | ||
* On R<sup>2</sup> [[St1997]], [[CoDeKnSt-p]], [[ | * On R<sup>2</sup> [[St1997]], [[CoDeKnSt-p]], [[Ta2001]] we have the sharp estimates | ||
<center><math>\| \underline{u}\underline{v} \|_{X^{0, -1/2+}} \leq \| u \|_{X^{-1/2+, 1/2+}} \| v \|_{X^{-1/2+, 1/2+}}</math></center> | <center><math>\| \underline{u}\underline{v} \|_{X^{0, -1/2+}} \leq \| u \|_{X^{-1/2+, 1/2+}} \| v \|_{X^{-1/2+, 1/2+}}</math></center> | ||
Line 91: | Line 91: | ||
<center><math>\| u\underline{v} \|_{X^{0, -1/2+}} \leq \| u \|_{X^{0, 1/2+}} \| v \|_{X^{0, 1/2+}}</math></center> | <center><math>\| u\underline{v} \|_{X^{0, -1/2+}} \leq \| u \|_{X^{0, 1/2+}} \| v \|_{X^{0, 1/2+}}</math></center> | ||
In two dimensions, the endpoint linear Strichartz estimate continues to fail in the bilinear setting [[Ta2006c]]. | |||
[[Category:Estimates]] | [[Category:Estimates]] | ||
==Schrodinger Trilinear estimates== | ==Schrodinger Trilinear estimates== | ||
Latest revision as of 20:29, 17 July 2007
Schrodinger estimates
Solutions to the linear Schrodinger equation and its perturbations are either estimated in mixed space-time norms Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^q_t L^r_x} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^r_x L^q_t} , or in X^{s,b} spaces defined by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \| u \|_{X^{s,b}} = \| u \|_{s,b} := \| \langle \xi\rangle^s \langle \tau -|\xi|^2\rangle^b \hat{u} \|_{L^2_{\tau,\xi}}.}
Note that these spaces are not invariant under conjugation.
Linear space-time estimates in which the space norm is evaluated first are known as Strichartz estimates. They are useful for NLS without derivatives, but are much less useful for derivative non-linearities. Other linear estimates include smoothing estimates and maximal function estimates. The Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X^{s,b}} spaces are used primarily for bilinear estimates, although more recently multilinear estimates have begun to appear.
Schrodinger Linear estimates
[More references needed here!]
On Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R^d} :
- If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in X^{0,1/2+}_{}}
, then
- (Energy estimate) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^\infty_t L^2_x.}
- (Strichartz estimates) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^{2(d+2)/d}_{x,t}}
Sz1977.
- More generally, f is in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^q_t L^r_x}
whenever Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1/q+n/2r = n/4, r < \infty}
, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q > 2\,.}
- The endpoint Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q=2, r = 2d/(d-2)\,} is true for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d \ge 3\,} KeTa1998. When it fails even in the BMO case Mo1998, although it still is true for radial functions Ta2000b, Stv-p.In fact the estimates are true assuming for non-radial functions some additional regularity in the angular variable Ta2000b, although there is a limit as to low little regularity one can impose MacNkrNaOz-p.
- In the radial case there are additional weighted smoothing estimates available Vi2001
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=1\,} one also has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^4_tL^\infty_x.}
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=1\,} one can refine the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2\,} assumption on the data in rather technical ways on the Fourier side, see e.g. VaVe2001.
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=1\,,} the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^6_{t,x}} estimate has a maximizer Kz-p2. This maximizer is in fact given by Gaussian beams, with a constant of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 12^{-1/12}\,} Fc-p4. Similarly when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=2\,} with the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^4\,} estimate, which is also given by Gaussian beams with a constant of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2^{-1/2}\,.}
- More generally, f is in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^q_t L^r_x}
whenever Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1/q+n/2r = n/4, r < \infty}
, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q > 2\,.}
- (Kato estimates) When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d > 1}
, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D^{1/2}\,}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^2_{x,loc}L^2_t}
Sl1987, Ve1988, ConSau1988.
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=1\,} we instead have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \dot D^{1/2}\,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^\infty_xL^2_t.}
- (Maximal function estimates) In all dimensions one has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D^{-s} f \in L^2_{x,loc}L^\infty_t}
for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s > 1/2.\,}
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=1\,} one also has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D^{-1/4}\,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^4_{x}L^\infty_t.}
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=2\,} one also has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^4_{x}L^\infty_t.} The Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle -1/2\,} can be raised to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle -1/2+1/32+ \epsilon\,} TaVa2000b, with the corresponding loss in the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^4\,} exponent dictated by scaling. Improvements are certainly possible.
- Variants of some of these estimates exist for manifolds, see BuGdTz-p
- Fixed time estimates for free solutions:
- (Energy estimate) If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^4} , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f\,} is also Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \in L^2\,} .
- (Decay estimate) If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(0) \in L^1} , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(t)\,} has an Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^\infty} norm of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle O(t^{-d/2}).\,}
- Interpolants between these two are very useful for proving Strichartz estimates and obtaining scattering.
On T:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X^{0,3/8}\,} embds into Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^4_{x,t}} Bo1993 (see also HimMis2001).
- embeds into Bo1993. One cannot remove the from the exponent, however it is conjectured in Bo1993 that one might be able to embed into
On :
- When embeds into (this is essentially in Bo1993)
- The endpoint is probably false in every dimension.
Strichartz estimates are also available on more general manifolds, and in the presence of a potential. Inhomogeneous estimates are also available off the line of duality; see Fc-p2 for a discussion.
Schrodinger Bilinear Estimates
- On R2 we have the bilinear Strichartz estimate Bo1999:
- On R2 St1997, CoDeKnSt-p, Ta2001 we have the sharp estimates
- On R KnPoVe1996b we have
and BkOgPo1998
Also, if u has frequency and v has frequency then we have (see e.g. CoKeStTkTa2003b)
and similarly for .
- The s indices on the right cannot be lowered, but perhaps the s indices on the left can be raised in analogy with the R2 estimates. The analogues on are also known KnPoVe1996b:
In two dimensions, the endpoint linear Strichartz estimate continues to fail in the bilinear setting Ta2006c.
Schrodinger Trilinear estimates
- On R we have the following refinement to the Strichartz inequality Gr-p2:
Schrodinger Multilinear estimates
- In R2 we have the variant
where each factor is allowed to be conjugated if desired. See St1997b, CoDeKnSt-p.