Schrodinger estimates: Difference between revisions
(5 intermediate revisions by 3 users not shown) | |||
Line 25: | Line 25: | ||
**** When <math>d=1\,</math> one can refine the <math>L^2\,</math> assumption on the data in rather technical ways on the Fourier side, see e.g. [[VaVe2001]]. | **** When <math>d=1\,</math> one can refine the <math>L^2\,</math> assumption on the data in rather technical ways on the Fourier side, see e.g. [[VaVe2001]]. | ||
**** When <math>d=1\,,</math> the <math>L^6_{t,x}</math> estimate has a maximizer [[Kz-p2]]. This maximizer is in fact given by Gaussian beams, with a constant of <math>12^{-1/12}\,</math> [[Fc-p4]]. Similarly when <math>d=2\,</math> with the <math>L^4\,</math> estimate, which is also given by Gaussian beams with a constant of <math>2^{-1/2}\,.</math> | **** When <math>d=1\,,</math> the <math>L^6_{t,x}</math> estimate has a maximizer [[Kz-p2]]. This maximizer is in fact given by Gaussian beams, with a constant of <math>12^{-1/12}\,</math> [[Fc-p4]]. Similarly when <math>d=2\,</math> with the <math>L^4\,</math> estimate, which is also given by Gaussian beams with a constant of <math>2^{-1/2}\,.</math> | ||
** (Kato estimates) <math>D^{1/2}\,</math> <math>f \in L^2_{x,loc}L^2_t</math> [[Sl1987]], [[Ve1988]]. | ** (Kato estimates) When <math>d > 1</math>, <math>D^{1/2}\,</math> <math>f \in L^2_{x,loc}L^2_t</math> [[Sl1987]], [[Ve1988]], [[ConSau1988]]. | ||
*** When <math>d=1\,</math> | *** When <math>d=1\,</math> we instead have <math>\dot D^{1/2}\,</math> <math>f \in L^\infty_xL^2_t.</math> | ||
** (Maximal function estimates) In all dimensions one has <math>D^{-s} f \in L^2_{x,loc}L^\infty_t</math> for all <math>s > 1/2.\,</math> | ** (Maximal function estimates) In all dimensions one has <math>D^{-s} f \in L^2_{x,loc}L^\infty_t</math> for all <math>s > 1/2.\,</math> | ||
*** When <math>d=1\,</math> one also has <math>D^{-1/4}\,</math> <math>f \in L^4_{x}L^\infty_t.</math> | *** When <math>d=1\,</math> one also has <math>D^{-1/4}\,</math> <math>f \in L^4_{x}L^\infty_t.</math> | ||
Line 91: | Line 91: | ||
<center><math>\| u\underline{v} \|_{X^{0, -1/2+}} \leq \| u \|_{X^{0, 1/2+}} \| v \|_{X^{0, 1/2+}}</math></center> | <center><math>\| u\underline{v} \|_{X^{0, -1/2+}} \leq \| u \|_{X^{0, 1/2+}} \| v \|_{X^{0, 1/2+}}</math></center> | ||
In two dimensions, the endpoint linear Strichartz estimate continues to fail in the bilinear setting [[Ta2006c]]. | |||
[[Category:Estimates]] | [[Category:Estimates]] |
Latest revision as of 20:29, 17 July 2007
Schrodinger estimates
Solutions to the linear Schrodinger equation and its perturbations are either estimated in mixed space-time norms Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^q_t L^r_x} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^r_x L^q_t} , or in X^{s,b} spaces defined by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \| u \|_{X^{s,b}} = \| u \|_{s,b} := \| \langle \xi\rangle^s \langle \tau -|\xi|^2\rangle^b \hat{u} \|_{L^2_{\tau,\xi}}.}
Note that these spaces are not invariant under conjugation.
Linear space-time estimates in which the space norm is evaluated first are known as Strichartz estimates. They are useful for NLS without derivatives, but are much less useful for derivative non-linearities. Other linear estimates include smoothing estimates and maximal function estimates. The Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X^{s,b}} spaces are used primarily for bilinear estimates, although more recently multilinear estimates have begun to appear.
Schrodinger Linear estimates
[More references needed here!]
On Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R^d} :
- If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in X^{0,1/2+}_{}}
, then
- (Energy estimate) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^\infty_t L^2_x.}
- (Strichartz estimates) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^{2(d+2)/d}_{x,t}}
Sz1977.
- More generally, f is in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^q_t L^r_x}
whenever Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1/q+n/2r = n/4, r < \infty}
, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q > 2\,.}
- The endpoint Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q=2, r = 2d/(d-2)\,} is true for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d \ge 3\,} KeTa1998. When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=2\,} it fails even in the BMO case Mo1998, although it still is true for radial functions Ta2000b, Stv-p.In fact the estimates are true assuming for non-radial functions some additional regularity in the angular variable Ta2000b, although there is a limit as to low little regularity one can impose MacNkrNaOz-p.
- In the radial case there are additional weighted smoothing estimates available Vi2001
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=1\,} one also has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^4_tL^\infty_x.}
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=1\,} one can refine the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2\,} assumption on the data in rather technical ways on the Fourier side, see e.g. VaVe2001.
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=1\,,} the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^6_{t,x}} estimate has a maximizer Kz-p2. This maximizer is in fact given by Gaussian beams, with a constant of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 12^{-1/12}\,} Fc-p4. Similarly when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=2\,} with the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^4\,} estimate, which is also given by Gaussian beams with a constant of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2^{-1/2}\,.}
- More generally, f is in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^q_t L^r_x}
whenever Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1/q+n/2r = n/4, r < \infty}
, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q > 2\,.}
- (Kato estimates) When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d > 1}
, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D^{1/2}\,}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^2_{x,loc}L^2_t}
Sl1987, Ve1988, ConSau1988.
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=1\,} we instead have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \dot D^{1/2}\,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^\infty_xL^2_t.}
- (Maximal function estimates) In all dimensions one has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D^{-s} f \in L^2_{x,loc}L^\infty_t}
for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s > 1/2.\,}
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=1\,} one also has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D^{-1/4}\,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^4_{x}L^\infty_t.}
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=2\,} one also has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D^{-1/2}\,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^4_{x}L^\infty_t.} The Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle -1/2\,} can be raised to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle -1/2+1/32+ \epsilon\,} TaVa2000b, with the corresponding loss in the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^4\,} exponent dictated by scaling. Improvements are certainly possible.
- Variants of some of these estimates exist for manifolds, see BuGdTz-p
- Fixed time estimates for free solutions:
- (Energy estimate) If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^4} , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f\,} is also Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \in L^2\,} .
- (Decay estimate) If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(0) \in L^1} , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(t)\,} has an Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^\infty} norm of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle O(t^{-d/2}).\,}
- Interpolants between these two are very useful for proving Strichartz estimates and obtaining scattering.
On T:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X^{0,3/8}\,} embds into Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^4_{x,t}} Bo1993 (see also HimMis2001).
- embeds into Bo1993. One cannot remove the from the exponent, however it is conjectured in Bo1993 that one might be able to embed into Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^{6-}_{x,t}.}
On Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle T^d\,} :
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d \ge 1, X^{d/4 - 1/2+,1/2+}\,}
embeds into Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^4_{x,t}}
(this is essentially in Bo1993)
- The endpoint Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d/4 - 1/2\,} is probably false in every dimension.
Strichartz estimates are also available on more general manifolds, and in the presence of a potential. Inhomogeneous estimates are also available off the line of duality; see Fc-p2 for a discussion.
Schrodinger Bilinear Estimates
- On R2 we have the bilinear Strichartz estimate Bo1999:
- On R2 St1997, CoDeKnSt-p, Ta2001 we have the sharp estimates
- On R KnPoVe1996b we have
and BkOgPo1998
Also, if u has frequency and v has frequency then we have (see e.g. CoKeStTkTa2003b)
and similarly for .
- The s indices on the right cannot be lowered, but perhaps the s indices on the left can be raised in analogy with the R2 estimates. The analogues on are also known KnPoVe1996b:
In two dimensions, the endpoint linear Strichartz estimate continues to fail in the bilinear setting Ta2006c.
Schrodinger Trilinear estimates
- On R we have the following refinement to the Strichartz inequality Gr-p2:
Schrodinger Multilinear estimates
- In R2 we have the variant
where each factor is allowed to be conjugated if desired. See St1997b, CoDeKnSt-p.