Cubic NLW/NLKG: Difference between revisions

From DispersiveWiki
Jump to navigationJump to search
(Introduced exact solutions of nonlinear wave equation without a mass term displaying massive dispersion law)
(Corrected an equation)
Line 18: Line 18:
We see that we started with an equation without a mass term but the exact solution describes a wave with a dispersion relation proper to a massive solution. This can be seen as the superposition of an infinite number of massive linear waves through a Fourier series of the Jacobi function, that is
We see that we started with an equation without a mass term but the exact solution describes a wave with a dispersion relation proper to a massive solution. This can be seen as the superposition of an infinite number of massive linear waves through a Fourier series of the Jacobi function, that is


<center><math>\phi(t,0)=\sum_{n=0}^\infty(-1)^n\frac{2\pi}{K(i)}\frac{e^{\left(n+{1\over 2}\right)\pi}}{1+e^{-(2n+1)\pi}}\sin\left((2n+1)\frac{\pi}{2K(i)}\left(\frac{\lambda}{2}\right)^{1\over 4}\mu t\right)</math></center>
<center><math>\phi(t,0)=\mu\left(\frac{2}{\lambda}\right)^{1\over 4}\sum_{n=0}^\infty(-1)^n\frac{2\pi}{K(i)}\frac{e^{\left(n+{1\over 2}\right)\pi}}{1+e^{-(2n+1)\pi}}\sin\left((2n+1)\frac{\pi}{2K(i)}\left(\frac{\lambda}{2}\right)^{1\over 4}\mu t\right)</math></center>


being <math>K(i)</math> an elliptic integral. We recognize the spectrum
being <math>K(i)</math> an elliptic integral. We recognize the spectrum

Revision as of 09:37, 19 November 2008


The cubic nonlinear wave and Klein-Gordon equations have been studied on R, on R^2, and on R^3.

This kind of equation displays a class of solutions with a peculiar dispersion law. To show explicitly this, let us consider the massless equation

being . An exact solution of this equation is given by

being sn a Jacobi elliptic function and two integration constants, when

We see that we started with an equation without a mass term but the exact solution describes a wave with a dispersion relation proper to a massive solution. This can be seen as the superposition of an infinite number of massive linear waves through a Fourier series of the Jacobi function, that is

being an elliptic integral. We recognize the spectrum

Via the mapping theorem FraE2007 this is also an exact solution of Yang-Mills equations with the substitution for a SU(N) Lie group.