Free wave equation: Difference between revisions

From DispersiveWiki
Jump to navigationJump to search
m (→‎Exact solutions: Renamed refrence (created an orphan))
m (Removed {{stub}} tag)
 
(One intermediate revision by the same user not shown)
Line 30: Line 30:
=== Solution in <math>{\mathbb R}^{1+d}</math> ===
=== Solution in <math>{\mathbb R}^{1+d}</math> ===


Solution of the Cauchy problem in <math>{\mathbb R}^{1+d}</math> can be given as follows [[You1965]]. We have
Solution of the Cauchy problem in <math>{\mathbb R}^{1+d}</math> can be given as follows [[You1966]]. We have


<center><math>\, f=f_0(x),\ \partial_tf=0\!</math></center>
<center><math>\, f=f_0(x),\ \partial_tf=0\!</math></center>
Line 49: Line 49:




{{stub}}
 
[[Category:Wave]]
[[Category:Wave]]
[[Category:Equations]]
[[Category:Equations]]

Latest revision as of 16:00, 1 July 2018

The free wave equation on is given by

where f is a scalar or vector field on Minkowski space . In coordinates, this becomes

It is the prototype for many nonlinear wave equations.

One can add a mass term to create the Klein-Gordon equation.

Exact solutions

Being this a linear equation one can always write down a solution using Fourier series or transform. These solutions represent superpositions of traveling waves.

Solution in

In this case one can write down the solution as

being two arbitrary functions and . This gives a complete solution to the Cauchy problem that can be cast as follows

for , so that

being an arbitrarily chosen primitive of .

Solution in

Solution of the Cauchy problem in can be given as follows You1966. We have

for , but now . One can write the solution as

when d is odd and

when d is even, being

on the surface of the d-sphere centered at x and with radius t.