|
|
| (4 intermediate revisions by 2 users not shown) |
| Line 10: |
Line 10: |
| The following trilinear estimates are known: | | The following trilinear estimates are known: |
|
| |
|
| * The 1/4 estimate [[references.html#Ta-p2 Ta-p2]] on '''R'''<nowiki>:</nowiki> | | * The 1/4 estimate [[Ta2001]] on '''R'''<nowiki>:</nowiki> |
|
| |
|
| <center><tt><font size="10.0pt"><nowiki>|| (</nowiki><span class="SpellE">uvw</span><span class="GramE">)_</span>x ||_{1/4, -1/2+} <~ || u ||_{1/4, 1/2+} || v ||_{1/4, 1/2+} || w ||_{1/4, 1/2+}</font></tt></center> | | <center><math> |
| | || (uvw)_x ||_{1/4, -1/2+} <~ || u ||_{1/4, 1/2+} || v ||_{1/4, 1/2+} || w ||_{1/4, 1/2+} |
| | </math></center> |
|
| |
|
| The 1/4 is sharp [[references.html#KnPoVe1996 KnPoVe1996]].We also have | | The 1/4 is sharp [[KnPoVe1996]].We also have |
|
| |
|
| <center><tt><font size="10.0pt"><nowiki>|| </nowiki><span class="SpellE"><span class="GramE">uv<u>w</u></span></span> ||_{-1/4, -5/12+} <~ || u ||_{-1/4, 7/12+} || v ||_{-1/4, 7/12+} || w ||_{-1/4, 7/12+}</font></tt></center> | | <center><math>|| uvw ||_{-1/4, -5/12+} <~ || u ||_{-1/4, 7/12+} || v ||_{-1/4, 7/12+} || w ||_{-1/4, 7/12+}; |
| | </math></center> |
|
| |
|
| <span class="GramE">see</span> [<span class="SpellE">Cv</span>-p].
| | see [[Cv2004]]. |
|
| |
|
| * The 1/2 estimate [[references.html#CoKeStTaTk-p3 CoKeStTkTa-p3]] on '''T'''<nowiki>: if </nowiki><span class="SpellE">u,v,w</span> have mean zero, then | | * The 1/2 estimate [[CoKeStTkTa-p3]] on '''T''': if <math>u,v,w</math> have mean zero, then |
|
| |
|
| <center><tt><font size="10.0pt"><nowiki>|| (</nowiki><span class="SpellE">uvw</span><span class="GramE">)_</span>x ||_{1/2, -1/2} <~ || u ||_{1/2, 1/2*} || v ||_{1/2, 1/2*} || w ||_{1/2, 1/2*}</font></tt></center> | | <center><math>|| (uvw)_x ||_{1/2, -1/2} |
| | <~ || u ||_{1/2, 1/2*} || v ||_{1/2, 1/2*} || w ||_{1/2, 1/2*} |
| | </math></center> |
|
| |
|
| The 1/2 is sharp [[references.html#KnPoVe1996 KnPoVe1996]]. | | The 1/2 is sharp [[KnPoVe1996]]. |
|
| |
|
| * ''Remark''<nowiki>: the </nowiki><span class="SpellE">trilinear</span> estimate always needs one more derivative of regularity than the bilinear estimate; this is consistent with the heuristics from the Miura transform from <span class="SpellE">mKdV</span> to <span class="SpellE">KdV</span>. | | * ''Remark'': the trilinear estimate always needs one more derivative of regularity than the bilinear estimate; this is consistent with the heuristics from the [[Miura transform]] from [[mKdV]] to [[KdV]]. |
|
| |
|
| [[Category:Estimates]] | | [[Category:Estimates]] |
Algebraic identity
Much of the trilinear estimate theory for Airy equation rests on (various permutations of) the following "four-wave resonance identity":
- The key algebraic fact is (various permutations of)
whenever
Estimates
The following trilinear estimates are known:
The 1/4 is sharp KnPoVe1996.We also have
see Cv2004.
- The 1/2 estimate CoKeStTkTa-p3 on T: if
have mean zero, then
The 1/2 is sharp KnPoVe1996.
- Remark: the trilinear estimate always needs one more derivative of regularity than the bilinear estimate; this is consistent with the heuristics from the Miura transform from mKdV to KdV.