Schrodinger estimates: Difference between revisions
mNo edit summary |
|||
(3 intermediate revisions by 2 users not shown) | |||
Line 25: | Line 25: | ||
**** When <math>d=1\,</math> one can refine the <math>L^2\,</math> assumption on the data in rather technical ways on the Fourier side, see e.g. [[VaVe2001]]. | **** When <math>d=1\,</math> one can refine the <math>L^2\,</math> assumption on the data in rather technical ways on the Fourier side, see e.g. [[VaVe2001]]. | ||
**** When <math>d=1\,,</math> the <math>L^6_{t,x}</math> estimate has a maximizer [[Kz-p2]]. This maximizer is in fact given by Gaussian beams, with a constant of <math>12^{-1/12}\,</math> [[Fc-p4]]. Similarly when <math>d=2\,</math> with the <math>L^4\,</math> estimate, which is also given by Gaussian beams with a constant of <math>2^{-1/2}\,.</math> | **** When <math>d=1\,,</math> the <math>L^6_{t,x}</math> estimate has a maximizer [[Kz-p2]]. This maximizer is in fact given by Gaussian beams, with a constant of <math>12^{-1/12}\,</math> [[Fc-p4]]. Similarly when <math>d=2\,</math> with the <math>L^4\,</math> estimate, which is also given by Gaussian beams with a constant of <math>2^{-1/2}\,.</math> | ||
** (Kato estimates) <math>D^{1/2}\,</math> <math>f \in L^2_{x,loc}L^2_t</math> [[Sl1987]], [[Ve1988]]. | ** (Kato estimates) When <math>d > 1</math>, <math>D^{1/2}\,</math> <math>f \in L^2_{x,loc}L^2_t</math> [[Sl1987]], [[Ve1988]], [[ConSau1988]]. | ||
*** When <math>d=1\,</math> | *** When <math>d=1\,</math> we instead have <math>\dot D^{1/2}\,</math> <math>f \in L^\infty_xL^2_t.</math> | ||
** (Maximal function estimates) In all dimensions one has <math>D^{-s} f \in L^2_{x,loc}L^\infty_t</math> for all <math>s > 1/2.\,</math> | ** (Maximal function estimates) In all dimensions one has <math>D^{-s} f \in L^2_{x,loc}L^\infty_t</math> for all <math>s > 1/2.\,</math> | ||
*** When <math>d=1\,</math> one also has <math>D^{-1/4}\,</math> <math>f \in L^4_{x}L^\infty_t.</math> | *** When <math>d=1\,</math> one also has <math>D^{-1/4}\,</math> <math>f \in L^4_{x}L^\infty_t.</math> |
Latest revision as of 20:29, 17 July 2007
Schrodinger estimates
Solutions to the linear Schrodinger equation and its perturbations are either estimated in mixed space-time norms or , or in X^{s,b} spaces defined by
Note that these spaces are not invariant under conjugation.
Linear space-time estimates in which the space norm is evaluated first are known as Strichartz estimates. They are useful for NLS without derivatives, but are much less useful for derivative non-linearities. Other linear estimates include smoothing estimates and maximal function estimates. The spaces are used primarily for bilinear estimates, although more recently multilinear estimates have begun to appear.
Schrodinger Linear estimates
[More references needed here!]
On :
- If , then
- (Energy estimate)
- (Strichartz estimates) Sz1977.
- More generally, f is in whenever , and
- The endpoint is true for KeTa1998. When it fails even in the BMO case Mo1998, although it still is true for radial functions Ta2000b, Stv-p.In fact the estimates are true assuming for non-radial functions some additional regularity in the angular variable Ta2000b, although there is a limit as to low little regularity one can impose MacNkrNaOz-p.
- In the radial case there are additional weighted smoothing estimates available Vi2001
- When one also has
- When one can refine the assumption on the data in rather technical ways on the Fourier side, see e.g. VaVe2001.
- When the estimate has a maximizer Kz-p2. This maximizer is in fact given by Gaussian beams, with a constant of Fc-p4. Similarly when with the estimate, which is also given by Gaussian beams with a constant of
- More generally, f is in whenever , and
- (Kato estimates) When , Sl1987, Ve1988, ConSau1988.
- When we instead have
- (Maximal function estimates) In all dimensions one has for all
- When one also has
- When one also has The can be raised to TaVa2000b, with the corresponding loss in the exponent dictated by scaling. Improvements are certainly possible.
- Variants of some of these estimates exist for manifolds, see BuGdTz-p
- Fixed time estimates for free solutions:
- (Energy estimate) If , then is also .
- (Decay estimate) If , then has an norm of
- Interpolants between these two are very useful for proving Strichartz estimates and obtaining scattering.
On T:
- embds into Bo1993 (see also HimMis2001).
- embeds into Bo1993. One cannot remove the from the exponent, however it is conjectured in Bo1993 that one might be able to embed into
On :
- When embeds into (this is essentially in Bo1993)
- The endpoint is probably false in every dimension.
Strichartz estimates are also available on more general manifolds, and in the presence of a potential. Inhomogeneous estimates are also available off the line of duality; see Fc-p2 for a discussion.
Schrodinger Bilinear Estimates
- On R2 we have the bilinear Strichartz estimate Bo1999:
- On R2 St1997, CoDeKnSt-p, Ta2001 we have the sharp estimates
- On R KnPoVe1996b we have
and BkOgPo1998
Also, if u has frequency and v has frequency then we have (see e.g. CoKeStTkTa2003b)
and similarly for .
- The s indices on the right cannot be lowered, but perhaps the s indices on the left can be raised in analogy with the R2 estimates. The analogues on are also known KnPoVe1996b:
In two dimensions, the endpoint linear Strichartz estimate continues to fail in the bilinear setting Ta2006c.
Schrodinger Trilinear estimates
- On R we have the following refinement to the Strichartz inequality Gr-p2:
Schrodinger Multilinear estimates
- In R2 we have the variant
where each factor is allowed to be conjugated if desired. See St1997b, CoDeKnSt-p.