Bilinear Airy estimates: Difference between revisions
From DispersiveWiki
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
* The -3/4+ estimate [[references.html#KnPoVe1996 KnPoVe1996]] on '''R'''<nowiki>:</nowiki> | * The -3/4+ estimate [[references.html#KnPoVe1996 KnPoVe1996]] on '''R'''<nowiki>:</nowiki> | ||
<center>< | <center><math>\| u\partial_x v ||_{X^{-3/4+, -1/2+}} \lesssim \| u \|_{X^{{-3/4+, 1/2+}} \| v \|_{X^{{-3/4+, 1/2+}}</math></center> | ||
** The above estimate fails at the endpoint -3/4. [[references.html#NaTkTs-p NaTkTs2001]] | ** The above estimate fails at the endpoint -3/4. [[references.html#NaTkTs-p NaTkTs2001]] | ||
** As a corollary of this estimate we have the -3/8+ estimate [[references.html#CoStTk1999 CoStTk1999]] on '''R'''<nowiki>: If u and v have no low frequencies ( |\xi| <~ 1 ) then</nowiki> | ** As a corollary of this estimate we have the -3/8+ estimate [[references.html#CoStTk1999 CoStTk1999]] on '''R'''<nowiki>: If u and v have no low frequencies ( |\xi| <~ 1 ) then</nowiki> | ||
<center>< | <center><math>\| u \partial_x v \|_{X^{{0, -1/2+}}} \lesssim \| u \|_{X^{-3/8+, 1/2+}} \| v \|_{X^{-3/8+, 1/2+}}</math></center> | ||
* The -1/2 estimate [[references.html#KnPoVe1996 KnPoVe1996]] on '''T'''<nowiki>: if </nowiki><span class="SpellE">u,v</span> have mean zero, then for all s >= -1/2 | * The -1/2 estimate [[references.html#KnPoVe1996 KnPoVe1996]] on '''T'''<nowiki>: if </nowiki><span class="SpellE">u,v</span> have mean zero, then for all s >= -1/2 | ||
<center>< | <center><math>\| u \partial_x v\|_{X^{s, -1/2}} \lesssim \| u \|_{X^{s, 1/2}} \| v \|_{X^{s, 1/2}}</math></center> | ||
** The above estimate fails for s < -1/2. Also, one cannot replace 1/2, -1/2 by 1/2+, -1/2+. [[references.html#KnPoVe1996 KnPoVe1996]] | ** The above estimate fails for <math>s < -1/2</math>. Also, one cannot replace <math>1/2, -1/2 by 1/2+, -1/2+<math>. [[references.html#KnPoVe1996 KnPoVe1996]] | ||
** This estimate also holds in the large period case if one is willing to lose a power of \lambda^{0+} in the constant. [[references.html#CoKeStTaTk-p2 CoKeStTkTa-p2]] | ** This estimate also holds in the large period case if one is willing to lose a power of \lambda^{0+} in the constant. [[references.html#CoKeStTaTk-p2 CoKeStTkTa-p2]] | ||
* ''Remark''<nowiki>: In principle, a complete list of bilinear estimates could be obtained from [</nowiki>[references.html#Ta-p2 Ta-p2]]. | * ''Remark''<nowiki>: In principle, a complete list of bilinear estimates could be obtained from [</nowiki>[references.html#Ta-p2 Ta-p2]]. | ||
[[Category:Estimates]] | [[Category:Estimates]] |
Revision as of 15:10, 28 July 2006
Algebraic identity
Much of the bilinear estimate theory for Airy equation rests on the following "three-wave resonance identity":
Estimates
The following bilinear estimates are known:
- The -3/4+ estimate references.html#KnPoVe1996 KnPoVe1996 on R:
- The above estimate fails at the endpoint -3/4. references.html#NaTkTs-p NaTkTs2001
- As a corollary of this estimate we have the -3/8+ estimate references.html#CoStTk1999 CoStTk1999 on R: If u and v have no low frequencies ( |\xi| <~ 1 ) then
- The -1/2 estimate references.html#KnPoVe1996 KnPoVe1996 on T: if u,v have mean zero, then for all s >= -1/2
- The above estimate fails for . Also, one cannot replace <math>1/2, -1/2 by 1/2+, -1/2+<math>. references.html#KnPoVe1996 KnPoVe1996
- This estimate also holds in the large period case if one is willing to lose a power of \lambda^{0+} in the constant. references.html#CoKeStTaTk-p2 CoKeStTkTa-p2
- Remark: In principle, a complete list of bilinear estimates could be obtained from [[references.html#Ta-p2 Ta-p2]].