Schrodinger estimates: Difference between revisions

From DispersiveWiki
Jump to navigationJump to search
(Cleaning bibliographic references)
Line 21: Line 21:
** (Strichartz estimates) <math>f \in L^{2(d+2)/d}_{x,t}</math> [[references:Sz1997 Sz1977]].
** (Strichartz estimates) <math>f \in L^{2(d+2)/d}_{x,t}</math> [[references:Sz1997 Sz1977]].
*** More generally, <font face="Symbol">f</font> is in <math>L^q_t L^r_x</math> whenever <math>1/q+n/2r = n/4, r < \infty</math>, and <math>q > 2\,.</math>
*** More generally, <font face="Symbol">f</font> is in <math>L^q_t L^r_x</math> whenever <math>1/q+n/2r = n/4, r < \infty</math>, and <math>q > 2\,.</math>
**** The endpoint <math>q=2, r = 2d/(d-2)\,</math> is true for <math>d >= 3\,</math>[[references:KeTa1998 KeTa1998]]. When <math>d=2\,</math> it fails even in the BMO case [[references:Mo1998 Mo1998]], although it still is true for radial functions [[references:Ta2000b Ta2000b]], [Stv-p].In fact the estimates are true assuming for non-radial functions some additional regularity in the angular variable [[references:Ta2000b Ta2000b]], although there is a limit as to low little regularity one can impose [MacNkrNaOz-p].
**** The endpoint <math>q=2, r = 2d/(d-2)\,</math> is true for <math>d >= 3\,</math>[[Bibliography#KeTa1998|KeTa1998]]. When <math>d=2\,</math> it fails even in the BMO case [[Bibliography#Mo1998|Mo1998]], although it still is true for radial functions [[Bibliography#Ta2000b|Ta2000b]], [Stv-p].In fact the estimates are true assuming for non-radial functions some additional regularity in the angular variable [[Bibliography#Ta2000b|Ta2000b]], although there is a limit as to low little regularity one can impose [MacNkrNaOz-p].
**** In the radial case there are additional weighted smoothing estimates available [[references:Vi2001 Vi2001]]
**** In the radial case there are additional weighted smoothing estimates available [[Bibliography#Vi2001|Vi2001]]
**** When <math>d=1\,</math> one also has <math>f \in L^4_tL^\infty_x.</math>
**** When <math>d=1\,</math> one also has <math>f \in L^4_tL^\infty_x.</math>
**** When <math>d=1\,</math> one can refine the <math>L^2\,</math> assumption on the data in rather technical ways on the Fourier side, see e.g. [[references:VaVe2001 VaVe2001]].
**** When <math>d=1\,</math> one can refine the <math>L^2\,</math> assumption on the data in rather technical ways on the Fourier side, see e.g. [[Bibliography#VaVe2001|VaVe2001]].
**** When <math>d=1\,,</math> the <math>L^6_{t,x}</math> estimate has a maximizer [Kz-p2].This maximizer is in fact given by Gaussian beams, with a constant of <math>12^{-1/12}\,</math> [Fc-p4].Similarly when <math>d=2\,</math> with the <math>L^4\,</math> estimate, which is also given by Gaussian beams with a constant of <math>2^{-1/2}\,.</math>
**** When <math>d=1\,,</math> the <math>L^6_{t,x}</math> estimate has a maximizer [Kz-p2].This maximizer is in fact given by Gaussian beams, with a constant of <math>12^{-1/12}\,</math> [Fc-p4].Similarly when <math>d=2\,</math> with the <math>L^4\,</math> estimate, which is also given by Gaussian beams with a constant of <math>2^{-1/2}\,.</math>
** (Kato estimates) <math>D^{1/2}\,</math> <math>f \in L^2_{x,loc}L^2_t</math> [[references:Sl1987 Sl1987]], [[references:Ve1988 Ve1988]]
** (Kato estimates) <math>D^{1/2}\,</math> <math>f \in L^2_{x,loc}L^2_t</math> [[Bibliography#Sl1987|Sl1987]], [[Bibliography#Ve1988|Ve1988]]
*** When <math>d=1\,</math> one can improve this to <math>D^{1/2}\,</math> <math>f \in L^\infty_xL^2_t.</math>
*** When <math>d=1\,</math> one can improve this to <math>D^{1/2}\,</math> <math>f \in L^\infty_xL^2_t.</math>
** (Maximal function estimates) In all dimensions one has <math>D^{-s} f \in L^2_{x,loc}L^\infty_t</math> for all <math>s > 1/2.\,</math>
** (Maximal function estimates) In all dimensions one has <math>D^{-s} f \in L^2_{x,loc}L^\infty_t</math> for all <math>s > 1/2.\,</math>
*** When <math>d=1\,</math> one also has <math>D^{-1/4}\,</math> <math>f \in L^4_{x}L^\infty_t.</math>
*** When <math>d=1\,</math> one also has <math>D^{-1/4}\,</math> <math>f \in L^4_{x}L^\infty_t.</math>
*** When <math>d=2\,</math> one also has <math>D^{-1/2}\,</math> <math>f \in L^4_{x}L^\infty_t.</math> The <math>-1/2\,</math> can be raised to <math>-1/2+1/32+ \epsilon\,</math> [[references:TaVa2000b TaVa2000b]], with the corresponding loss in the <math>L^4\,</math> exponent dictated by scaling. Improvements are certainly possible.
*** When <math>d=2\,</math> one also has <math>D^{-1/2}\,</math> <math>f \in L^4_{x}L^\infty_t.</math> The <math>-1/2\,</math> can be raised to <math>-1/2+1/32+ \epsilon\,</math> [[Bibliography#TaVa2000b|TaVa2000b]], with the corresponding loss in the <math>L^4\,</math> exponent dictated by scaling. Improvements are certainly possible.
** Variants of some of these estimates exist for manifolds, see [BuGdTz-p]
** Variants of some of these estimates exist for manifolds, see [BuGdTz-p]
* Fixed time estimates for free solutions:
* Fixed time estimates for free solutions:
Line 39: Line 39:
On T:
On T:


* <math>X^{0,3/8}\,</math> embds into <math>L^4_{x,t}</math> [[references:Bo1993 Bo1993]] (see also [[references:HimMis2001 HimMis2001]]).
* <math>X^{0,3/8}\,</math> embds into <math>L^4_{x,t}</math> [[Bibliography#Bo1993|Bo1993]] (see also [[Bibliography#HimMis2001|HimMis2001]]).
* <math>X^{0+,1/2+}\,</math> embeds into <math>L^6_{x,t}</math> [[references:Bo1993 Bo1993]]. One cannot remove the <math>+\,</math> from the <math>0+\,</math> exponent, however it is conjectured in [[references:Bo1993 Bo1993]] that one might be able to embed <math>X^{0,1/2+}\,</math> into <math>L^{6-}_{x,t}.</math>
* <math>X^{0+,1/2+}\,</math> embeds into <math>L^6_{x,t}</math> [[Bibliography#Bo1993|Bo1993]]. One cannot remove the <math>+\,</math> from the <math>0+\,</math> exponent, however it is conjectured in [[Bibliography#Bo1993|Bo1993]] that one might be able to embed <math>X^{0,1/2+}\,</math> into <math>L^{6-}_{x,t}.</math>


On <math>T^d\,</math>:
On <math>T^d\,</math>:


* When <math>d >= 1, X^{d/4 - 1/2+,1/2+}\,</math> embeds into <math>L^4_{x,t}</math> (this is essentially in [[references:Bo1993 Bo1993]])
* When <math>d >= 1, X^{d/4 - 1/2+,1/2+}\,</math> embeds into <math>L^4_{x,t}</math> (this is essentially in [[Bibliography#Bo1993|Bo1993]])
** The endpoint <math>d/4 - 1/2\,</math> is probably false in every dimension.
** The endpoint <math>d/4 - 1/2\,</math> is probably false in every dimension.


Line 54: Line 54:
==Schrodinger Bilinear Estimates==
==Schrodinger Bilinear Estimates==


* On R<sup>2</sup> we have the bilinear Strichartz estimate [[references:Bo1999 Bo1999]]:
* On R<sup>2</sup> we have the bilinear Strichartz estimate [[Bibliography#Bo1999|Bo1999]]:


<center><math>\| uv \|_{X^{1/2+, 0}} \leq \| u \|_{X^{1/2+, 1/2+}} \| v \|_{X^{0+, 1/2+}}</math></center>
<center><math>\| uv \|_{X^{1/2+, 0}} \leq \| u \|_{X^{1/2+, 1/2+}} \| v \|_{X^{0+, 1/2+}}</math></center>


* On R<sup>2</sup> [[references:St1997 St1997]], [[references:CoDeKnSt-p CoDeKnSt-p]], [[references:Ta-p2 Ta-p2]] we have the sharp estimates
* On R<sup>2</sup> [[Bibliography#St1997|St1997]], [[references:CoDeKnSt-p CoDeKnSt-p]], [[references:Ta-p2 Ta-p2]] we have the sharp estimates


<center><math>\| \underline{u}\underline{v} \|_{X^{0, -1/2+}} \leq \| u \|_{X^{-1/2+, 1/2+}} \| v \|_{X^{-1/2+, 1/2+}}</math></center>
<center><math>\| \underline{u}\underline{v} \|_{X^{0, -1/2+}} \leq \| u \|_{X^{-1/2+, 1/2+}} \| v \|_{X^{-1/2+, 1/2+}}</math></center>
Line 68: Line 68:
<center><math>\| u\underline{v} \|_{X^{-1/4+, -1/2+}} \leq \| u \|_{X^{-1/4+, 1/2+}} \| v \|_{X^{-1/4+, 1/2+}}</math></center>
<center><math>\| u\underline{v} \|_{X^{-1/4+, -1/2+}} \leq \| u \|_{X^{-1/4+, 1/2+}} \| v \|_{X^{-1/4+, 1/2+}}</math></center>


* On R [[references:KnPoVe1996b KnPoVe1996b]] we have
* On R [[Bibliography#KnPoVe1996b|KnPoVe1996b]] we have


<center><math>\| \underline{u}\underline{v} \|_{X^{-3/4-, -1/2+}} \leq \| u \|_{X^{-3/4+, 1/2+}} \| v \|_{X^{-3/4+, 1/2+}}</math></center>
<center><math>\| \underline{u}\underline{v} \|_{X^{-3/4-, -1/2+}} \leq \| u \|_{X^{-3/4+, 1/2+}} \| v \|_{X^{-3/4+, 1/2+}}</math></center>
Line 76: Line 76:
<center><math>\| u\underline{v} \|_{X^{-1/4+, -1/2+}} \leq \| u \|_{X^{-1/4+, 1/2+}} \| v \|_{X^{-1/4+, 1/2+}}</math></center>
<center><math>\| u\underline{v} \|_{X^{-1/4+, -1/2+}} \leq \| u \|_{X^{-1/4+, 1/2+}} \| v \|_{X^{-1/4+, 1/2+}}</math></center>


and [[references:BkOgPo1998 BkOgPo1998]]
and [[Bibliography#BkOgPo1998|BkOgPo1998]]


<center><math>\| uv \|_{L^\infty_t H^{1/3}_x} \leq \| u \|_{X^{0, 1/2+}} \| v \|_{X^{0, 1/2+}}</math></center>
<center><math>\| uv \|_{L^\infty_t H^{1/3}_x} \leq \| u \|_{X^{0, 1/2+}} \| v \|_{X^{0, 1/2+}}</math></center>
Line 86: Line 86:
and similarly for <math>\underline{u}v, u\underline{v}, \underline{uv}\,</math> . <br />
and similarly for <math>\underline{u}v, u\underline{v}, \underline{uv}\,</math> . <br />


* The s indices on the right cannot be lowered, but perhaps the s indices on the left can be raised in analogy with the R<sup>2</sup> estimates. The analogues on <math>T</math> are also known [[references:KnPoVe1996b KnPoVe1996b]]:
* The s indices on the right cannot be lowered, but perhaps the s indices on the left can be raised in analogy with the R<sup>2</sup> estimates. The analogues on <math>T</math> are also known [[Bibliography#KnPoVe1996b|KnPoVe1996b]]:


<center><math>\| \underline{u}\underline{v} \|_{X^{-1/2-, -1/2+}} \leq \| u \|_{X^{-1/2+, 1/2+}} \| v \|_{X^{-1/2+, 1/2+}}</math></center>
<center><math>\| \underline{u}\underline{v} \|_{X^{-1/2-, -1/2+}} \leq \| u \|_{X^{-1/2+, 1/2+}} \| v \|_{X^{-1/2+, 1/2+}}</math></center>
Line 115: Line 115:
<center><math>\| u_{1}...u_{n} \|_{X^{1/2+, 1/2+}} \leq \| u_1 \|_{X^{1+, 1/2+}}...\| u_n \|_{X^{1+, 1/2+}}</math></center>
<center><math>\| u_{1}...u_{n} \|_{X^{1/2+, 1/2+}} \leq \| u_1 \|_{X^{1+, 1/2+}}...\| u_n \|_{X^{1+, 1/2+}}</math></center>


where each factor <math>u_i\,</math> is allowed to be conjugated if desired. See [[references:St1997b St1997b]], [[references:CoDeKnSt-p CoDeKnSt-p]].
where each factor <math>u_i\,</math> is allowed to be conjugated if desired. See [[Bibliography#St1997b|St1997b]], [[references:CoDeKnSt-p CoDeKnSt-p]].


<div class="MsoNormal" style="text-align: center"><center>
<div class="MsoNormal" style="text-align: center"><center>

Revision as of 20:29, 28 July 2006

Schrodinger estimates

Solutions to the linear Schrodinger equation and its perturbations are either estimated in mixed space-time norms or , or in spaces, defined by

Note that these spaces are not invariant under conjugation.

Linear space-time estimates in which the space norm is evaluated first are known as Strichartz estimates. They are useful for NLS without derivatives, but are much less useful for derivative non-linearities. Other linear estimates include smoothing estimates and maximal function estimates. The spaces are used primarily for bilinear estimates, although more recently multilinear estimates have begun to appear. These spaces and estimates first appear in the context of the Schrodinger equation in [Bo1993], although the analogous spaces for the wave equation appeared earlier [RaRe1982], [Be1983] in the context of propogation of singularities. See also [Bo1993b], [KlMa1993].

Schrodinger Linear estimates

[More references needed here!]

On :

  • If , then
    • (Energy estimate)
    • (Strichartz estimates) references:Sz1997 Sz1977.
      • More generally, f is in whenever , and
        • The endpoint is true for KeTa1998. When it fails even in the BMO case Mo1998, although it still is true for radial functions Ta2000b, [Stv-p].In fact the estimates are true assuming for non-radial functions some additional regularity in the angular variable Ta2000b, although there is a limit as to low little regularity one can impose [MacNkrNaOz-p].
        • In the radial case there are additional weighted smoothing estimates available Vi2001
        • When one also has
        • When one can refine the assumption on the data in rather technical ways on the Fourier side, see e.g. VaVe2001.
        • When the estimate has a maximizer [Kz-p2].This maximizer is in fact given by Gaussian beams, with a constant of [Fc-p4].Similarly when with the estimate, which is also given by Gaussian beams with a constant of
    • (Kato estimates) Sl1987, Ve1988
      • When one can improve this to
    • (Maximal function estimates) In all dimensions one has for all
      • When one also has
      • When one also has The can be raised to TaVa2000b, with the corresponding loss in the exponent dictated by scaling. Improvements are certainly possible.
    • Variants of some of these estimates exist for manifolds, see [BuGdTz-p]
  • Fixed time estimates for free solutions:
    • (Energy estimate) If , then is also .
    • (Decay estimate) If , then has an norm of
    • Interpolants between these two are very useful for proving Strichartz estimates and obtaining scattering.

On T:

  • embds into Bo1993 (see also HimMis2001).
  • embeds into Bo1993. One cannot remove the from the exponent, however it is conjectured in Bo1993 that one might be able to embed into

On :

  • When embeds into (this is essentially in Bo1993)
    • The endpoint is probably false in every dimension.

Strichartz estimates are also available on [#manifold more general manifolds], and in the [#potential presence of a potential].Inhomogeneous estimates are also available off

the line of duality; see [Fc-p2] for a discussion.

Schrodinger Bilinear Estimates

  • On R2 we have the bilinear Strichartz estimate Bo1999:

and BkOgPo1998

Also, if u has frequency and v has frequency then we have (see e.g. [CoKeStTkTa-p4])

and similarly for .

  • The s indices on the right cannot be lowered, but perhaps the s indices on the left can be raised in analogy with the R2 estimates. The analogues on are also known KnPoVe1996b:

Schrodinger Trilinear estimates

  • On R we have the following refinement to the Strichartz inequality [Gr-p2]:

Schrodinger Multilinear estimates

  • In R2 we have the variant

where each factor is allowed to be conjugated if desired. See St1997b, references:CoDeKnSt-p CoDeKnSt-p.