Modified Korteweg-de Vries equation: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
The (defocusing) '''modified Korteweg-de Vries (mKdV) equation''' is | The (defocusing) '''modified Korteweg-de Vries (mKdV) equation''' is | ||
<center><math>u_t + u_{xxx} = 6 u^2 u_x</math></center> | <center><math>u_t + u_{xxx} = 6 u^2 u_x.</math></center> | ||
It is completely <span class="SpellE">integrable</span>, and has infinitely many conserved quantities. Indeed, for each non-negative integer k, there is a conserved quantity which is roughly equivalent to the <span class="SpellE">H^k</span> norm of u. This equation has been studied [[modified Korteweg-de Vries on R|on the line]], [[modified Korteweg-de Vries on T|on the circle]], and [[modified Korteweg-de Vries on R|on the half-line]]. | It is completely <span class="SpellE">integrable</span>, and has infinitely many conserved quantities. Indeed, for each non-negative integer k, there is a conserved quantity which is roughly equivalent to the <span class="SpellE">H^k</span> norm of u. This equation has been studied [[modified Korteweg-de Vries on R|on the line]], [[modified Korteweg-de Vries on T|on the circle]], and [[modified Korteweg-de Vries on R|on the half-line]]. |
Revision as of 19:16, 28 July 2006
The (defocusing) modified Korteweg-de Vries (mKdV) equation is
It is completely integrable, and has infinitely many conserved quantities. Indeed, for each non-negative integer k, there is a conserved quantity which is roughly equivalent to the H^k norm of u. This equation has been studied on the line, on the circle, and on the half-line.
The focussing mKdV
is very similar, but admits soliton solutions.
Miura transform
In the defocusing case, the Miura transformation v = u_x + u^2 transforms a solution of defocussing mKdV to a solution of [#kdv KdV]
Thus one expects the LWP and GWP theory for mKdV to be one derivative higher than that for KdV.
In the focusing case, the Miura transform is now v = u_x + i u^2. This transforms focussing mKdV to complex-valued KdV, which is a slightly less tractable equation. (However, the transformed solution v is still real in the highest order term, so in principle the real-valued theory carries over to this case).
The Miura transformation can be generalized. If v and w solve the system
w_t + w_xxx = 6(v^2 + w) w_x
Then u = v^2 + v_x + w is a solution of KdV. In particular, if a and b are constants and v solves
then u = a^2 v^2 + av_x + bv solves KdV (this is the Gardener transform).