Einstein equations: Difference between revisions

From DispersiveWiki
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
[Note: This is an immense topic, and we do not even begin to do it justice with this very brief selection of results. For more detail, we recommend the very nice [http://relativity.livingreviews.org/Articles/lrr-2002-6/index.html survey on existence and global dynamics of the Einstein equations by Alan Rendall]. Further references are, of course, always appreciated. We thank Uwe Brauer, Daniel Pollack, and some anonymous contributors to this section.]
[Note: This is an immense topic, and we do not even begin to do it justice with this very brief selection of results. For more detail, we recommend the very nice [http://relativity.livingreviews.org/Articles/lrr-2002-6/index.html survey on existence and global dynamics of the Einstein equations by Alan Rendall]. Further references or expansion of this article will, of course, be very much appreciated.]


The (vacuum) Einstein equations take the form
The (vacuum) Einstein equations take the form
Line 7: Line 7:
where g is the metric for a 3+1-dimensional manifold, R is the Ricci curvature tensor, and C is an absolute constant. The Cauchy data for this problem is thus a three-dimensional Riemannian manifold together with the second fundamental form of this manifold (roughly speaking, this is like the initial position and initial velocity for the metric g). However, these two quantities are not completely independent; they must obey certain ''constraint equations''. These equations are now known to be well behaved for all s > 3/2 [Max-p], [Max2005] (see also earlier work in higher regularities in [[Bibliography#RenFri2000|RenFri2000]], [[Bibliography#Ren2002|Ren2002]]).
where g is the metric for a 3+1-dimensional manifold, R is the Ricci curvature tensor, and C is an absolute constant. The Cauchy data for this problem is thus a three-dimensional Riemannian manifold together with the second fundamental form of this manifold (roughly speaking, this is like the initial position and initial velocity for the metric g). However, these two quantities are not completely independent; they must obey certain ''constraint equations''. These equations are now known to be well behaved for all s > 3/2 [Max-p], [Max2005] (see also earlier work in higher regularities in [[Bibliography#RenFri2000|RenFri2000]], [[Bibliography#Ren2002|Ren2002]]).


Because of the diffeomorphism invariance of the Einstein equations, these equations are not hyperbolic as stated. However, this can be remedied by choosing an appropriate choice of co-ordinate system (a gauge, if you will). One popular choice is ''harmonic co-ordinates'' or ''wave co-ordinates'', where the co-ordinate functions x<sup> a </sup> are assumed to obey the wave equation Box<sub>g</sub> x<sup> a </sup> = 0 with respect to the metric g. In this case the Einstein equations take a form which (in gross caricature) looks something like
Because of the diffeomorphism invariance of the Einstein equations, these equations are not hyperbolic as stated. However, this can be remedied by choosing an appropriate choice of co-ordinate system (which is the analog of a [[gauge transformation]] in gauge theory). One popular choice is ''harmonic co-ordinates'' or ''wave co-ordinates'', where the co-ordinate functions x<sup> a </sup> are assumed to obey the wave equation Box<sub>g</sub> x<sup> a </sup> = 0 with respect to the metric g. In this case the Einstein equations take a form which (in gross caricature) looks something like


<center>Box<sub>g</sub> g =  G (g) Q(dg, dg) + lower order terms</center>
<center>Box<sub>g</sub> g =  G (g) Q(dg, dg) + lower order terms</center>


where Q is some quadratic form of the first two derivatives. In other words, it becomes a [#Quasilinear quasilinear wave equation]. One would then specify initial <br /> data on the initial surface x = 0; the co-ordinate x plays the role of time, locally at least.
where Q is some quadratic form of the first two derivatives. In other words, it becomes a [QNLW|quasilinear wave equation]. One would then specify initial <br /> data on the initial surface x = 0; the co-ordinate x plays the role of time, locally at least.


* Scaling is s_c = 3/2. Thus energy is super-critical, which seems to make a large data global theory extremely difficult.
* Scaling is s_c = 3/2. Thus energy is super-critical, which seems to make a large data global theory extremely difficult.
* LWP is known in H^s for s > 5/2 by energy estimates (see [[Bibliography#HuKaMar1977|HuKaMar1977]], [AnMc-p]; for smooth data s > 4 this is in [[Bibliography#Cq1952|Cq1952]]) - given that the initial data obeys the constraint equations, of course.
* LWP is known in H^s for s > 5/2 by energy estimates (see [[HuKaMar1977]], [[AnMc-p]]; for smooth data s > 4 this is in [[Cq1952]]) - given that the initial data obeys the constraint equations, of course.
** This result can be improved to s>2 by the [#Quasilinear recent quasilinear theory] (see in particular [KlRo-p3], [KlRo-p4], [KlRo-p5]).
** This result can be improved to s>2 by the [[QNLW|recent quasilinear theory]] (see in particular [[KlRo-p3]], [[KlRo-p4]], [[KlRo-p5]]).
** This result has now been improved further to s=2 [KlRo-p6], [KlRo-p7], [KlRo-p8]
** This result has now been improved further to s=2 [[KlRo-p6]], [[KlRo-p7]], [[KlRo-p8]]
** For smooth data, one has a (possibly geodesically incomplete) maximal Cauchy development [[Bibliography#CqGc1969|CqGc1969]].
** For smooth data, one has a (possibly geodesically incomplete) maximal Cauchy development [[Bibliography#CqGc1969|CqGc1969]].
* GWP for small smooth asymptotically flat data was shown in [[Bibliography#CdKl1993|CdKl1993]] (see also [[Bibliography#CdKl1990|CdKl1990]]). In other words, Minkowski space is stable.
* GWP for small smooth asymptotically flat data was shown in [[CdKl1993]] (see also [[CdKl1990]]). In other words, [[Minkowski space]] is stable.
** Another proof using the double null foliation is in [[Bibliography#KlNi2003|KlNi2003]], [KlNi-p]
** Another proof using the double null foliation is in [[KlNi2003]], [[KlNi-p]]
** Another proof of this fact (using the Lorenz gauge, and assuming Schwarzschild metric outside of a compact set) is in [LbRo-p] (see also [[Bibliography#LbRo2003|LbRo2003]] for a treatment of the asymptotic dynamics)
** Another proof of this fact (using the Lorenz gauge, and assuming Schwarzschild metric outside of a compact set) is in [[LbRo-p]] (see also [[LbRo2003]] for a treatment of the asymptotic dynamics)
** Singularities must form if there is a trapped surface [[Bibliography#Pn1965|Pn1965]].
** Singularities must form if there is a trapped surface [[Pn1965]].
* Many special solutions (Schwarzschild space, Kerr space, etc.) The stability of these spaces is a very interesting (and difficult) question.
* Many special solutions (Schwarzschild space, Kerr space, etc.) The stability of these spaces is a very interesting (and difficult) question.
* The equations can simplify under additional symmetry assumptions. The U(1)-symmetric case reduces to a system of equations which closely resembles the [#wm_on_R^2 two-dimensional wave maps equation] (with the target manifold being hyperbolic space H^2).
* The equations can simplify under additional symmetry assumptions. The U(1)-symmetric case reduces to a system of equations which closely resembles the [[wave maps on r2|two-dimensional wave maps equation]] (with the target manifold being hyperbolic space H^2).
* Another important question is the ''Cosmic Censorship Hypothesis''. Informally, this asserts that singularities are always (or at least generically) concealed by black holes. Another (slightly different) version of the conjecture asserts that the maximal Cauchy development is always inextendable as a (suitably regular) Lorentzian manifold. This question is already interesting in the U(1)-symmetric case (perhaps with a matter coupling).
 
== Open problems ==
 
* [[Cosmic Censorship Hypothesis]]


[[Category:Geometry]]
[[Category:Geometry]]
[[Category:wave]]
[[Category:wave]]
[[Category:Equations]]
[[Category:Equations]]

Revision as of 04:27, 2 August 2006

[Note: This is an immense topic, and we do not even begin to do it justice with this very brief selection of results. For more detail, we recommend the very nice survey on existence and global dynamics of the Einstein equations by Alan Rendall. Further references or expansion of this article will, of course, be very much appreciated.]

The (vacuum) Einstein equations take the form

R_{ \alpha \beta } = C R g_{ \alpha \beta }

where g is the metric for a 3+1-dimensional manifold, R is the Ricci curvature tensor, and C is an absolute constant. The Cauchy data for this problem is thus a three-dimensional Riemannian manifold together with the second fundamental form of this manifold (roughly speaking, this is like the initial position and initial velocity for the metric g). However, these two quantities are not completely independent; they must obey certain constraint equations. These equations are now known to be well behaved for all s > 3/2 [Max-p], [Max2005] (see also earlier work in higher regularities in RenFri2000, Ren2002).

Because of the diffeomorphism invariance of the Einstein equations, these equations are not hyperbolic as stated. However, this can be remedied by choosing an appropriate choice of co-ordinate system (which is the analog of a gauge transformation in gauge theory). One popular choice is harmonic co-ordinates or wave co-ordinates, where the co-ordinate functions x a are assumed to obey the wave equation Boxg x a = 0 with respect to the metric g. In this case the Einstein equations take a form which (in gross caricature) looks something like

Boxg g = G (g) Q(dg, dg) + lower order terms

where Q is some quadratic form of the first two derivatives. In other words, it becomes a [QNLW|quasilinear wave equation]. One would then specify initial
data on the initial surface x = 0; the co-ordinate x plays the role of time, locally at least.

  • Scaling is s_c = 3/2. Thus energy is super-critical, which seems to make a large data global theory extremely difficult.
  • LWP is known in H^s for s > 5/2 by energy estimates (see HuKaMar1977, AnMc-p; for smooth data s > 4 this is in Cq1952) - given that the initial data obeys the constraint equations, of course.
  • GWP for small smooth asymptotically flat data was shown in CdKl1993 (see also CdKl1990). In other words, Minkowski space is stable.
    • Another proof using the double null foliation is in KlNi2003, KlNi-p
    • Another proof of this fact (using the Lorenz gauge, and assuming Schwarzschild metric outside of a compact set) is in LbRo-p (see also LbRo2003 for a treatment of the asymptotic dynamics)
    • Singularities must form if there is a trapped surface Pn1965.
  • Many special solutions (Schwarzschild space, Kerr space, etc.) The stability of these spaces is a very interesting (and difficult) question.
  • The equations can simplify under additional symmetry assumptions. The U(1)-symmetric case reduces to a system of equations which closely resembles the two-dimensional wave maps equation (with the target manifold being hyperbolic space H^2).

Open problems