Semilinear NLW: Difference between revisions
(New subsection introduced energy expression changed. May be more structure needed?) |
|||
Line 1: | Line 1: | ||
===Semilinear wave equations=== | ===Semilinear wave equations=== | ||
__TOC__ | |||
[Note: Many references needed here!] | [Note: Many references needed here!] | ||
Line 11: | Line 11: | ||
Typically <math>F</math> is a [[power type]] nonlinearity. If <math>F</math> is the gradient of some function <math>V</math>, then we have a [[conserved]] [[Hamiltonian]] | Typically <math>F</math> is a [[power type]] nonlinearity. If <math>F</math> is the gradient of some function <math>V</math>, then we have a [[conserved]] [[Hamiltonian]] | ||
<center><math>\int | \phi_t |^2 | <center><math>\int | \frac{\phi_t |^2}{ 2} + | \frac{\nabla \phi |^2}{2} + V( \phi )\ dx.</math></center> | ||
For NLKG there is an additional term of <math>| \phi |^2 /2</math> in the integrand, which is useful for controlling the low frequencies of <math>f</math> . If V is positive definite then we call the NLW [[defocusing]]; if <math>V</math> is negative definite we call the NLW [[focusing]]. | For NLKG there is an additional term of <math>| \phi |^2 /2</math> in the integrand, which is useful for controlling the low frequencies of <math>f</math> . If V is positive definite then we call the NLW [[defocusing]]; if <math>V</math> is negative definite we call the NLW [[focusing]]. | ||
Line 88: | Line 88: | ||
|} | |} | ||
====Necessary conditions for [[LWP]] ==== | |||
The following necessary conditions for [[LWP]] are known. Firstly, for focussing NLW/NLKG one has blowup in finite time for large data, as can be seen by the [[ODE method]]. One can scale this and obtain ill-posedness for any focussing NLW/NLKG in the supercritical regime s < s_c; this has been extended to the defocusing case in [[CtCoTa-p2]]. By using Lorentz scaling instead of isotropic scaling one can also obtain ill-posedness whenever s is below the conformal regularity | The following necessary conditions for [[LWP]] are known. Firstly, for focussing NLW/NLKG one has blowup in finite time for large data, as can be seen by the [[ODE method]]. One can scale this and obtain ill-posedness for any focussing NLW/NLKG in the supercritical regime s < s_c; this has been extended to the defocusing case in [[CtCoTa-p2]]. By using Lorentz scaling instead of isotropic scaling one can also obtain ill-posedness whenever s is below the conformal regularity | ||
Revision as of 13:52, 16 January 2007
Semilinear wave equations
[Note: Many references needed here!]
Semilinear wave equations (NLW) and semi-linear Klein-Gordon equations (NLKG) take the form
respectively where is a function only of and not of its derivatives, which vanishes to more than first order.
Typically is a power type nonlinearity. If is the gradient of some function , then we have a conserved Hamiltonian
For NLKG there is an additional term of in the integrand, which is useful for controlling the low frequencies of . If V is positive definite then we call the NLW defocusing; if is negative definite we call the NLW focusing.
To analyze these equations in we need the non-linearity to be sufficiently smooth. More precisely, we will always assume either that is smooth, or that is a p^th-power type non-linearity with .
The scaling regularity is . Notable powers of include the -critical power , the -critical or conformal power p_{H^{1/2}} = 1 + 4/(d-1), and the -critical power .
Dimension d |
Strauss exponent (NLKG) |
-critical exponent |
Strauss exponent (NLW) |
H^{1/2}-critical exponent |
H^1-critical exponent |
1 |
3.56155... |
5 |
infinity |
infinity |
N/A |
2 |
2.41421... |
3 |
3.56155... |
5 |
infinity |
3 |
2 |
2.33333... |
2.41421... |
3 |
5 |
4 |
1.78078... |
2 |
2 |
2.33333... |
3 |
Necessary conditions for LWP
The following necessary conditions for LWP are known. Firstly, for focussing NLW/NLKG one has blowup in finite time for large data, as can be seen by the ODE method. One can scale this and obtain ill-posedness for any focussing NLW/NLKG in the supercritical regime s < s_c; this has been extended to the defocusing case in CtCoTa-p2. By using Lorentz scaling instead of isotropic scaling one can also obtain ill-posedness whenever s is below the conformal regularity
in the focusing case; the defocusing case is still open. In the -critical power or below, this condition is stronger than the scaling requirement.
- When and 1 < p < p_{H^{1/2}} with the focusing sign, blowup is known to occur when a certain Lyapunov functional is negative, and the rate of blowup is self-similar MeZaa2003; earlier results are in AntMe2001, CafFri1986, Al1995, KiLit1993, KiLit1993b.
To make sense of the non-linearity in the sense of distributions we need s \geq 0 (indeed we have illposedness below this regularity by a high-to-low cascade, see CtCoTa-p2). In the one-dimensional case one also needs the condition to keep the non-linearity integrable, because there is no Strichartz smoothing to exploit.
Finally, in three dimensions one has ill-posedness when and Lb1993.
- In dimensions d\leq3 the above necessary conditions are also sufficient for LWP.
- For d>4 sufficiency is only known assuming the condition
(*)
and excluding the double endpoint when (*) holds with equality and s=s_{conf} Ta1999. The main tool is two-scale Strichartz estimates.
- By using standard Strichartz estimates this was proven with (*) replaced by
see KeTa1998 for the double endpoint when (**) holds with equality and s=s_{conf}, and LbSo1995 for all other cases. A slightly weaker result also appears in Kp1993.
GWP and scattering for NLW is known for data with small norm when is at or above the -critical power (and this has been extended to Besov spaces; see Pl-p4. This can be used to obtain self-similar solutions, see [MiaZg-p2]). One also has GWP in in the defocussing case when p is at or below the -critical power. (At the critical power this result is due to Gl1992; see also SaSw1994. For radial data this was shown in Sw1988.) For more scattering results, see below.
For the defocussing NLKG, GWP in , , is known in the following cases:
[MiaZgFg-p]. Note that this is the range of p for which s_conf obeys both the scaling condition and the condition (**).
GWP and blowup has also been studied for the NLW with a conformal factor
the significance of this factor is that it behaves well under conformal compactification. See Aa2002, BcKkZz2002, Gue2003 for some recent results.
A substantial scattering theory for NLW and NLKG is known.
The non-relativistic limit of NLKG has attracted a fair amount of research.
Specific semilinear wave equations
- Sine-Gordon
- Quadratic NLW/NLKG
- Cubic NLW/NLKG (on R, on R^2, on R^3, and on R^4)
- Quartic NLW/NLKG
- Quintic NLW/NLKG (on R, on R^2, and on R^3)
- Septic NLW/NLKG (on R, on R^2, and on R^3)