Schrodinger estimates: Difference between revisions
No edit summary |
m (fixed math a bit more) |
||
Line 2: | Line 2: | ||
Solutions to the linear Schrodinger equation and its perturbations are either estimated in mixed space-time norms <math>L^q_t L^r_x</math> or <math>L^r_x L^q_t< | Solutions to the linear Schrodinger equation and its perturbations are either estimated in mixed space-time norms <math>L^q_t L^r_x</math> or <math>L^r_x L^q_t</math>, or in <math>X^{s,b}</math> spaces, defined by | ||
::<math>|| u ||_{X^{s,b}} = || u ||_{s,b} := || \langle \xi\rangle^s \langle \tau -|\xi|^2\rangle^b \hat{u} ||_{L^2_{\tau,\xi}}.</math> | |||
|| u ||s,b = || | |||
Note that these spaces are not invariant under conjugation. | Note that these spaces are not invariant under conjugation. | ||
Linear space-time estimates in which the space norm is evaluated first are known as Strichartz estimates. They are useful for NLS without derivatives, but are much less useful for derivative non-linearities. Other linear estimates include smoothing estimates and maximal function estimates. The X^{s,b} spaces are used primarily for bilinear estimates, although more recently multilinear estimates have begun to appear. These spaces and estimates first appear in the context of the Schrodinger equation in [Bo1993], although the analogous spaces for the wave equation appeared earlier [RaRe1982], [Be1983] in the context of propogation of singularities. See also [Bo1993b], [KlMa1993]. | Linear space-time estimates in which the space norm is evaluated first are known as Strichartz estimates. They are useful for NLS without derivatives, but are much less useful for derivative non-linearities. Other linear estimates include smoothing estimates and maximal function estimates. The X^{s,b} spaces are used primarily for bilinear estimates, although more recently multilinear estimates have begun to appear. These spaces and estimates first appear in the context of the Schrodinger equation in [Bo1993], although the analogous spaces for the wave equation appeared earlier [RaRe1982], [Be1983] in the context of propogation of singularities. See also [Bo1993b], [KlMa1993]. |
Revision as of 04:11, 27 July 2006
Schrodinger estimates
Solutions to the linear Schrodinger equation and its perturbations are either estimated in mixed space-time norms or , or in spaces, defined by
Note that these spaces are not invariant under conjugation.
Linear space-time estimates in which the space norm is evaluated first are known as Strichartz estimates. They are useful for NLS without derivatives, but are much less useful for derivative non-linearities. Other linear estimates include smoothing estimates and maximal function estimates. The X^{s,b} spaces are used primarily for bilinear estimates, although more recently multilinear estimates have begun to appear. These spaces and estimates first appear in the context of the Schrodinger equation in [Bo1993], although the analogous spaces for the wave equation appeared earlier [RaRe1982], [Be1983] in the context of propogation of singularities. See also [Bo1993b], [KlMa1993].