Schrodinger estimates: Difference between revisions
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
Linear space-time estimates in which the space norm is evaluated first are known as Strichartz estimates. They are useful for NLS without derivatives, but are much less useful for derivative non-linearities. Other linear estimates include smoothing estimates and maximal function estimates. The X^{s,b} spaces are used primarily for bilinear estimates, although more recently multilinear estimates have begun to appear. These spaces and estimates first appear in the context of the Schrodinger equation in [Bo1993], although the analogous spaces for the wave equation appeared earlier [RaRe1982], [Be1983] in the context of propogation of singularities. See also [Bo1993b], [KlMa1993]. | Linear space-time estimates in which the space norm is evaluated first are known as Strichartz estimates. They are useful for NLS without derivatives, but are much less useful for derivative non-linearities. Other linear estimates include smoothing estimates and maximal function estimates. The X^{s,b} spaces are used primarily for bilinear estimates, although more recently multilinear estimates have begun to appear. These spaces and estimates first appear in the context of the Schrodinger equation in [Bo1993], although the analogous spaces for the wave equation appeared earlier [RaRe1982], [Be1983] in the context of propogation of singularities. See also [Bo1993b], [KlMa1993]. | ||
[[Category:Estimates]] | |||
===Schrodinger Linear estimates=== | |||
[More references needed here!] | |||
On <math>R^d</math>: | |||
* If <math> f \in X^{0,1/2+}_{}</math>, then | |||
** (Energy estimate) <math>f \in L^\infty_t L^2_x.</math> | |||
** (Strichartz estimates) <math>f \in L^{2(d+2)/d}_{x,t}</math> [[references:Sz1997 Sz1977]]. | |||
*** More generally, <font face="Symbol">f</font> is in <math>L^q_t L^r_x</math> whenever <math>1/q+n/2r = n/4, r < \infty</math>, and <math>q > 2\,.</math> | |||
**** The endpoint <math>q=2, r = 2d/(d-2)\,</math> is true for <math>d >= 3\,</math>[[references:KeTa1998 KeTa1998]]. When <math>d=2\,</math> it fails even in the BMO case [[references:Mo1998 Mo1998]], although it still is true for radial functions [[references:Ta2000b Ta2000b]], [Stv-p].In fact the estimates are true assuming for non-radial functions some additional regularity in the angular variable [[references:Ta2000b Ta2000b]], although there is a limit as to low little regularity one can impose [MacNkrNaOz-p]. | |||
**** In the radial case there are additional weighted smoothing estimates available [[references:Vi2001 Vi2001]] | |||
**** When <math>d=1\,</math> one also has <math>f \in L^4_tL^\infty_x.</math> | |||
**** When <math>d=1\,</math> one can refine the <math>L^2\,</math> assumption on the data in rather technical ways on the Fourier side, see e.g. [[references:VaVe2001 VaVe2001]]. | |||
**** When <math>d=1\,,</math> the <math>L^6_{t,x}</math> estimate has a maximizer [Kz-p2].This maximizer is in fact given by Gaussian beams, with a constant of <math>12^{-1/12}\,</math> [Fc-p4].Similarly when <math>d=2\,</math> with the <math>L^4\,</math> estimate, which is also given by Gaussian beams with a constant of <math>2^{-1/2}\,.</math> | |||
** (Kato estimates) <math>D^{1/2}\,</math> <math>f \in L^2_{x,loc}L^2_t</math> [[references:Sl1987 Sl1987]], [[references:Ve1988 Ve1988]] | |||
*** When <math>d=1\,</math> one can improve this to <math>D^{1/2}\,</math> <math>f \in L^\infty_xL^2_t.</math> | |||
** (Maximal function estimates) In all dimensions one has <math>D^{-s} f \in L^2_{x,loc}L^\infty_t</math> for all <math>s > 1/2.\,</math> | |||
*** When <math>d=1\,</math> one also has <math>D^{-1/4}\,</math> <math>f \in L^4_{x}L^\infty_t.</math> | |||
*** When <math>d=2\,</math> one also has <math>D^{-1/2}\,</math> <math>f \in L^4_{x}L^\infty_t.</math> The <math>-1/2\,</math> can be raised to <math>-1/2+1/32+ \epsilon\,</math> [[references:TaVa2000b TaVa2000b]], with the corresponding loss in the <math>L^4\,</math> exponent dictated by scaling. Improvements are certainly possible. | |||
** Variants of some of these estimates exist for manifolds, see [BuGdTz-p] | |||
* Fixed time estimates for free solutions: | |||
** (Energy estimate) If <math>f \in L^4</math>, then <math>f\,</math> is also <math>\in L^2\,</math>. | |||
** (Decay estimate) If <math>f(0) \in L^1</math>, then <math>f(t)\,</math> has an <math>L^\infty</math> norm of <math>O(t^{-d/2}).\,</math> | |||
** Interpolants between these two are very useful for proving Strichartz estimates and obtaining scattering. | |||
On T: | |||
* <math>X^{0,3/8}\,</math> embds into <math>L^4_{x,t}</math> [[references:Bo1993 Bo1993]] (see also [[references:HimMis2001 HimMis2001]]). | |||
* <math>X^{0+,1/2+}\,</math> embeds into <math>L^6_{x,t}</math> [[references:Bo1993 Bo1993]]. One cannot remove the <math>+\,</math> from the <math>0+\,</math> exponent, however it is conjectured in [[references:Bo1993 Bo1993]] that one might be able to embed <math>X^{0,1/2+}\,</math> into <math>L^{6-}_{x,t}.</math> | |||
On <math>T^d\,</math>: | |||
* When <math>d >= 1, X^{d/4 - 1/2+,1/2+}\,</math> embeds into <math>L^4_{x,t}</math> (this is essentially in [[references:Bo1993 Bo1993]]) | |||
** The endpoint <math>d/4 - 1/2\,</math> is probably false in every dimension. | |||
Strichartz estimates are also available on [#manifold more general manifolds], and in the [#potential presence of a potential].Inhomogeneous estimates are also available off | |||
the line of duality; see [Fc-p2] for a discussion. | |||
[[Category:Estimates]] | |||
===Schrodinger Bilinear Estimates=== | |||
* On R<sup>2</sup> we have the bilinear Strichartz estimate [[references:Bo1999 Bo1999]]: | |||
<center><math>\| uv \|_{X^{1/2+, 0}} \leq \| u \|_{X^{1/2+, 1/2+}} \| v \|_{X^{0+, 1/2+}}</math></center> | |||
* On R<sup>2</sup> [[references:St1997 St1997]], [[references:CoDeKnSt-p CoDeKnSt-p]], [[references:Ta-p2 Ta-p2]] we have the sharp estimates | |||
<center><math>\| \underline{u}\underline{v} \|_{X^{0, -1/2+}} \leq \| u \|_{X^{-1/2+, 1/2+}} \| v \|_{X^{-1/2+, 1/2+}}</math></center> | |||
<center><math>\| \underline{u}\underline{v} \|_{X^{-1/2-, -1/2+}} \leq \| u \|_{X^{-3/4+, 1/2+}} \| v \|_{X^{-3/4+, 1/2+}}</math></center> | |||
<center><math>\| uv \|_{X^{-1/2-, -1/2+}} \leq \| u \|_{X^{-3/4+, 1/2+}} \| v \|_{X^{-3/4+, 1/2+}}</math></center> | |||
<center><math>\| u\underline{v} \|_{X^{-1/4+, -1/2+}} \leq \| u \|_{X^{-1/4+, 1/2+}} \| v \|_{X^{-1/4+, 1/2+}}</math></center> | |||
* On R [[references:KnPoVe1996b KnPoVe1996b]] we have | |||
<center><math>\| \underline{u}\underline{v} \|_{X^{-3/4-, -1/2+}} \leq \| u \|_{X^{-3/4+, 1/2+}} \| v \|_{X^{-3/4+, 1/2+}}</math></center> | |||
<center><math>\| uv \|_{X^{-3/4+, -1/2+}} \leq \| u \|_{X^{-3/4+, 1/2+}} \| v \|_{X^{-3/4+, 1/2+}}</math></center> | |||
<center><math>\| u\underline{v} \|_{X^{-1/4+, -1/2+}} \leq \| u \|_{X^{-1/4+, 1/2+}} \| v \|_{X^{-1/4+, 1/2+}}</math></center> | |||
and [[references:BkOgPo1998 BkOgPo1998]] | |||
<center><math>\| uv \|_{L^\infty_t H^{1/3}_x} \leq \| u \|_{X^{0, 1/2+}} \| v \|_{X^{0, 1/2+}}</math></center> | |||
Also, if u has frequency <math>|\epsilon| \approx R\,</math> and v has frequency <math>|\epsilon| << R\,</math> then we have (see e.g. [CoKeStTkTa-p4]) | |||
<center><math>\| uv \|_{X^{1/2, 0}} \leq \| u \|_{X^{0, 1/2+}} \| v \|_{X^{0, 1/2+}}</math></center> | |||
and similarly for <math>\underline{u}v, u\underline{v}, \underline{uv}\,</math> . <br /> | |||
* The s indices on the right cannot be lowered, but perhaps the s indices on the left can be raised in analogy with the R<sup>2</sup> estimates. The analogues on <math>T</math> are also known [[references:KnPoVe1996b KnPoVe1996b]]: | |||
<center><math>\| \underline{u}\underline{v} \|_{X^{-1/2-, -1/2+}} \leq \| u \|_{X^{-1/2+, 1/2+}} \| v \|_{X^{-1/2+, 1/2+}}</math></center> | |||
<center><math>\| uv \|_{X^{-3/4+, -1/2+}} \leq \| u \|_{X^{-1/2+, 1/2+}} \| v \|_{X^{-1/2+, 1/2+}}</math></center> | |||
<center><math>\| u\underline{v} \|_{X^{0, -1/2+}} \leq \| u \|_{X^{0, 1/2+}} \| v \|_{X^{0, 1/2+}}</math></center> | |||
<div class="MsoNormal" style="text-align: center"><center> | |||
---- | |||
</center></div> | |||
[[Category:Estimates]] | |||
===Schrodinger Trilinear estimates=== | |||
* On R we have the following refinement to the <math>L^6/,</math> Strichartz inequality [Gr-p2]: | |||
<center><math>\| uvw \|_{X^{0, 0}} \leq \| u \|_{X^{0, 1/2+}} \| v \|_{X^{-1/4, 1/2+}} \| w \|_{X^{1/4, 1/2+}}</math></center> | |||
<div class="MsoNormal" style="text-align: center"><center> | |||
---- | |||
</center></div> | |||
[[Category:Estimates]] | |||
===Schrodinger Multilinear estimates=== | |||
* In R<sup>2</sup> we have the variant | |||
<center><math>\| u_{1}...u_{n} \|_{X^{1/2+, 1/2+}} \leq \| u_1 \|_{X^{1+, 1/2+}}...\| u_n \|_{X^{1+, 1/2+}}</math></center> | |||
where each factor <math>u_i\,</math> is allowed to be conjugated if desired. See [[references:St1997b St1997b]], [[references:CoDeKnSt-p CoDeKnSt-p]]. | |||
<div class="MsoNormal" style="text-align: center"><center> | |||
---- | |||
</center></div> | |||
[[Category:Estimates]] | [[Category:Estimates]] |
Revision as of 18:28, 28 July 2006
Schrodinger estimates
Solutions to the linear Schrodinger equation and its perturbations are either estimated in mixed space-time norms or , or in spaces, defined by
Note that these spaces are not invariant under conjugation.
Linear space-time estimates in which the space norm is evaluated first are known as Strichartz estimates. They are useful for NLS without derivatives, but are much less useful for derivative non-linearities. Other linear estimates include smoothing estimates and maximal function estimates. The X^{s,b} spaces are used primarily for bilinear estimates, although more recently multilinear estimates have begun to appear. These spaces and estimates first appear in the context of the Schrodinger equation in [Bo1993], although the analogous spaces for the wave equation appeared earlier [RaRe1982], [Be1983] in the context of propogation of singularities. See also [Bo1993b], [KlMa1993].
Schrodinger Linear estimates
[More references needed here!]
On :
- If , then
- (Energy estimate)
- (Strichartz estimates) references:Sz1997 Sz1977.
- More generally, f is in whenever , and
- The endpoint is true for references:KeTa1998 KeTa1998. When it fails even in the BMO case references:Mo1998 Mo1998, although it still is true for radial functions references:Ta2000b Ta2000b, [Stv-p].In fact the estimates are true assuming for non-radial functions some additional regularity in the angular variable references:Ta2000b Ta2000b, although there is a limit as to low little regularity one can impose [MacNkrNaOz-p].
- In the radial case there are additional weighted smoothing estimates available references:Vi2001 Vi2001
- When one also has
- When one can refine the assumption on the data in rather technical ways on the Fourier side, see e.g. references:VaVe2001 VaVe2001.
- When the estimate has a maximizer [Kz-p2].This maximizer is in fact given by Gaussian beams, with a constant of [Fc-p4].Similarly when with the estimate, which is also given by Gaussian beams with a constant of
- More generally, f is in whenever , and
- (Kato estimates) references:Sl1987 Sl1987, references:Ve1988 Ve1988
- When one can improve this to
- (Maximal function estimates) In all dimensions one has for all
- When one also has
- When one also has The can be raised to references:TaVa2000b TaVa2000b, with the corresponding loss in the exponent dictated by scaling. Improvements are certainly possible.
- Variants of some of these estimates exist for manifolds, see [BuGdTz-p]
- Fixed time estimates for free solutions:
- (Energy estimate) If , then is also .
- (Decay estimate) If , then has an norm of
- Interpolants between these two are very useful for proving Strichartz estimates and obtaining scattering.
On T:
- embds into references:Bo1993 Bo1993 (see also references:HimMis2001 HimMis2001).
- embeds into references:Bo1993 Bo1993. One cannot remove the from the exponent, however it is conjectured in references:Bo1993 Bo1993 that one might be able to embed into
On :
- When embeds into (this is essentially in references:Bo1993 Bo1993)
- The endpoint is probably false in every dimension.
Strichartz estimates are also available on [#manifold more general manifolds], and in the [#potential presence of a potential].Inhomogeneous estimates are also available off
the line of duality; see [Fc-p2] for a discussion.
Schrodinger Bilinear Estimates
- On R2 we have the bilinear Strichartz estimate references:Bo1999 Bo1999:
- On R2 references:St1997 St1997, references:CoDeKnSt-p CoDeKnSt-p, references:Ta-p2 Ta-p2 we have the sharp estimates
- On R references:KnPoVe1996b KnPoVe1996b we have
and references:BkOgPo1998 BkOgPo1998
Also, if u has frequency and v has frequency then we have (see e.g. [CoKeStTkTa-p4])
and similarly for .
- The s indices on the right cannot be lowered, but perhaps the s indices on the left can be raised in analogy with the R2 estimates. The analogues on are also known references:KnPoVe1996b KnPoVe1996b:
Schrodinger Trilinear estimates
- On R we have the following refinement to the Strichartz inequality [Gr-p2]:
Schrodinger Multilinear estimates
- In R2 we have the variant
where each factor is allowed to be conjugated if desired. See references:St1997b St1997b, references:CoDeKnSt-p CoDeKnSt-p.