Schrodinger estimates: Difference between revisions
Cleaning bibliographic references |
|||
Line 21: | Line 21: | ||
** (Strichartz estimates) <math>f \in L^{2(d+2)/d}_{x,t}</math> [[references:Sz1997 Sz1977]]. | ** (Strichartz estimates) <math>f \in L^{2(d+2)/d}_{x,t}</math> [[references:Sz1997 Sz1977]]. | ||
*** More generally, <font face="Symbol">f</font> is in <math>L^q_t L^r_x</math> whenever <math>1/q+n/2r = n/4, r < \infty</math>, and <math>q > 2\,.</math> | *** More generally, <font face="Symbol">f</font> is in <math>L^q_t L^r_x</math> whenever <math>1/q+n/2r = n/4, r < \infty</math>, and <math>q > 2\,.</math> | ||
**** The endpoint <math>q=2, r = 2d/(d-2)\,</math> is true for <math>d >= 3\,</math>[[ | **** The endpoint <math>q=2, r = 2d/(d-2)\,</math> is true for <math>d >= 3\,</math>[[Bibliography#KeTa1998|KeTa1998]]. When <math>d=2\,</math> it fails even in the BMO case [[Bibliography#Mo1998|Mo1998]], although it still is true for radial functions [[Bibliography#Ta2000b|Ta2000b]], [Stv-p].In fact the estimates are true assuming for non-radial functions some additional regularity in the angular variable [[Bibliography#Ta2000b|Ta2000b]], although there is a limit as to low little regularity one can impose [MacNkrNaOz-p]. | ||
**** In the radial case there are additional weighted smoothing estimates available [[ | **** In the radial case there are additional weighted smoothing estimates available [[Bibliography#Vi2001|Vi2001]] | ||
**** When <math>d=1\,</math> one also has <math>f \in L^4_tL^\infty_x.</math> | **** When <math>d=1\,</math> one also has <math>f \in L^4_tL^\infty_x.</math> | ||
**** When <math>d=1\,</math> one can refine the <math>L^2\,</math> assumption on the data in rather technical ways on the Fourier side, see e.g. [[ | **** When <math>d=1\,</math> one can refine the <math>L^2\,</math> assumption on the data in rather technical ways on the Fourier side, see e.g. [[Bibliography#VaVe2001|VaVe2001]]. | ||
**** When <math>d=1\,,</math> the <math>L^6_{t,x}</math> estimate has a maximizer [Kz-p2].This maximizer is in fact given by Gaussian beams, with a constant of <math>12^{-1/12}\,</math> [Fc-p4].Similarly when <math>d=2\,</math> with the <math>L^4\,</math> estimate, which is also given by Gaussian beams with a constant of <math>2^{-1/2}\,.</math> | **** When <math>d=1\,,</math> the <math>L^6_{t,x}</math> estimate has a maximizer [Kz-p2].This maximizer is in fact given by Gaussian beams, with a constant of <math>12^{-1/12}\,</math> [Fc-p4].Similarly when <math>d=2\,</math> with the <math>L^4\,</math> estimate, which is also given by Gaussian beams with a constant of <math>2^{-1/2}\,.</math> | ||
** (Kato estimates) <math>D^{1/2}\,</math> <math>f \in L^2_{x,loc}L^2_t</math> [[ | ** (Kato estimates) <math>D^{1/2}\,</math> <math>f \in L^2_{x,loc}L^2_t</math> [[Bibliography#Sl1987|Sl1987]], [[Bibliography#Ve1988|Ve1988]] | ||
*** When <math>d=1\,</math> one can improve this to <math>D^{1/2}\,</math> <math>f \in L^\infty_xL^2_t.</math> | *** When <math>d=1\,</math> one can improve this to <math>D^{1/2}\,</math> <math>f \in L^\infty_xL^2_t.</math> | ||
** (Maximal function estimates) In all dimensions one has <math>D^{-s} f \in L^2_{x,loc}L^\infty_t</math> for all <math>s > 1/2.\,</math> | ** (Maximal function estimates) In all dimensions one has <math>D^{-s} f \in L^2_{x,loc}L^\infty_t</math> for all <math>s > 1/2.\,</math> | ||
*** When <math>d=1\,</math> one also has <math>D^{-1/4}\,</math> <math>f \in L^4_{x}L^\infty_t.</math> | *** When <math>d=1\,</math> one also has <math>D^{-1/4}\,</math> <math>f \in L^4_{x}L^\infty_t.</math> | ||
*** When <math>d=2\,</math> one also has <math>D^{-1/2}\,</math> <math>f \in L^4_{x}L^\infty_t.</math> The <math>-1/2\,</math> can be raised to <math>-1/2+1/32+ \epsilon\,</math> [[ | *** When <math>d=2\,</math> one also has <math>D^{-1/2}\,</math> <math>f \in L^4_{x}L^\infty_t.</math> The <math>-1/2\,</math> can be raised to <math>-1/2+1/32+ \epsilon\,</math> [[Bibliography#TaVa2000b|TaVa2000b]], with the corresponding loss in the <math>L^4\,</math> exponent dictated by scaling. Improvements are certainly possible. | ||
** Variants of some of these estimates exist for manifolds, see [BuGdTz-p] | ** Variants of some of these estimates exist for manifolds, see [BuGdTz-p] | ||
* Fixed time estimates for free solutions: | * Fixed time estimates for free solutions: | ||
Line 39: | Line 39: | ||
On T: | On T: | ||
* <math>X^{0,3/8}\,</math> embds into <math>L^4_{x,t}</math> [[ | * <math>X^{0,3/8}\,</math> embds into <math>L^4_{x,t}</math> [[Bibliography#Bo1993|Bo1993]] (see also [[Bibliography#HimMis2001|HimMis2001]]). | ||
* <math>X^{0+,1/2+}\,</math> embeds into <math>L^6_{x,t}</math> [[ | * <math>X^{0+,1/2+}\,</math> embeds into <math>L^6_{x,t}</math> [[Bibliography#Bo1993|Bo1993]]. One cannot remove the <math>+\,</math> from the <math>0+\,</math> exponent, however it is conjectured in [[Bibliography#Bo1993|Bo1993]] that one might be able to embed <math>X^{0,1/2+}\,</math> into <math>L^{6-}_{x,t}.</math> | ||
On <math>T^d\,</math>: | On <math>T^d\,</math>: | ||
* When <math>d >= 1, X^{d/4 - 1/2+,1/2+}\,</math> embeds into <math>L^4_{x,t}</math> (this is essentially in [[ | * When <math>d >= 1, X^{d/4 - 1/2+,1/2+}\,</math> embeds into <math>L^4_{x,t}</math> (this is essentially in [[Bibliography#Bo1993|Bo1993]]) | ||
** The endpoint <math>d/4 - 1/2\,</math> is probably false in every dimension. | ** The endpoint <math>d/4 - 1/2\,</math> is probably false in every dimension. | ||
Line 54: | Line 54: | ||
==Schrodinger Bilinear Estimates== | ==Schrodinger Bilinear Estimates== | ||
* On R<sup>2</sup> we have the bilinear Strichartz estimate [[ | * On R<sup>2</sup> we have the bilinear Strichartz estimate [[Bibliography#Bo1999|Bo1999]]: | ||
<center><math>\| uv \|_{X^{1/2+, 0}} \leq \| u \|_{X^{1/2+, 1/2+}} \| v \|_{X^{0+, 1/2+}}</math></center> | <center><math>\| uv \|_{X^{1/2+, 0}} \leq \| u \|_{X^{1/2+, 1/2+}} \| v \|_{X^{0+, 1/2+}}</math></center> | ||
* On R<sup>2</sup> [[ | * On R<sup>2</sup> [[Bibliography#St1997|St1997]], [[references:CoDeKnSt-p CoDeKnSt-p]], [[references:Ta-p2 Ta-p2]] we have the sharp estimates | ||
<center><math>\| \underline{u}\underline{v} \|_{X^{0, -1/2+}} \leq \| u \|_{X^{-1/2+, 1/2+}} \| v \|_{X^{-1/2+, 1/2+}}</math></center> | <center><math>\| \underline{u}\underline{v} \|_{X^{0, -1/2+}} \leq \| u \|_{X^{-1/2+, 1/2+}} \| v \|_{X^{-1/2+, 1/2+}}</math></center> | ||
Line 68: | Line 68: | ||
<center><math>\| u\underline{v} \|_{X^{-1/4+, -1/2+}} \leq \| u \|_{X^{-1/4+, 1/2+}} \| v \|_{X^{-1/4+, 1/2+}}</math></center> | <center><math>\| u\underline{v} \|_{X^{-1/4+, -1/2+}} \leq \| u \|_{X^{-1/4+, 1/2+}} \| v \|_{X^{-1/4+, 1/2+}}</math></center> | ||
* On R [[ | * On R [[Bibliography#KnPoVe1996b|KnPoVe1996b]] we have | ||
<center><math>\| \underline{u}\underline{v} \|_{X^{-3/4-, -1/2+}} \leq \| u \|_{X^{-3/4+, 1/2+}} \| v \|_{X^{-3/4+, 1/2+}}</math></center> | <center><math>\| \underline{u}\underline{v} \|_{X^{-3/4-, -1/2+}} \leq \| u \|_{X^{-3/4+, 1/2+}} \| v \|_{X^{-3/4+, 1/2+}}</math></center> | ||
Line 76: | Line 76: | ||
<center><math>\| u\underline{v} \|_{X^{-1/4+, -1/2+}} \leq \| u \|_{X^{-1/4+, 1/2+}} \| v \|_{X^{-1/4+, 1/2+}}</math></center> | <center><math>\| u\underline{v} \|_{X^{-1/4+, -1/2+}} \leq \| u \|_{X^{-1/4+, 1/2+}} \| v \|_{X^{-1/4+, 1/2+}}</math></center> | ||
and [[ | and [[Bibliography#BkOgPo1998|BkOgPo1998]] | ||
<center><math>\| uv \|_{L^\infty_t H^{1/3}_x} \leq \| u \|_{X^{0, 1/2+}} \| v \|_{X^{0, 1/2+}}</math></center> | <center><math>\| uv \|_{L^\infty_t H^{1/3}_x} \leq \| u \|_{X^{0, 1/2+}} \| v \|_{X^{0, 1/2+}}</math></center> | ||
Line 86: | Line 86: | ||
and similarly for <math>\underline{u}v, u\underline{v}, \underline{uv}\,</math> . <br /> | and similarly for <math>\underline{u}v, u\underline{v}, \underline{uv}\,</math> . <br /> | ||
* The s indices on the right cannot be lowered, but perhaps the s indices on the left can be raised in analogy with the R<sup>2</sup> estimates. The analogues on <math>T</math> are also known [[ | * The s indices on the right cannot be lowered, but perhaps the s indices on the left can be raised in analogy with the R<sup>2</sup> estimates. The analogues on <math>T</math> are also known [[Bibliography#KnPoVe1996b|KnPoVe1996b]]: | ||
<center><math>\| \underline{u}\underline{v} \|_{X^{-1/2-, -1/2+}} \leq \| u \|_{X^{-1/2+, 1/2+}} \| v \|_{X^{-1/2+, 1/2+}}</math></center> | <center><math>\| \underline{u}\underline{v} \|_{X^{-1/2-, -1/2+}} \leq \| u \|_{X^{-1/2+, 1/2+}} \| v \|_{X^{-1/2+, 1/2+}}</math></center> | ||
Line 115: | Line 115: | ||
<center><math>\| u_{1}...u_{n} \|_{X^{1/2+, 1/2+}} \leq \| u_1 \|_{X^{1+, 1/2+}}...\| u_n \|_{X^{1+, 1/2+}}</math></center> | <center><math>\| u_{1}...u_{n} \|_{X^{1/2+, 1/2+}} \leq \| u_1 \|_{X^{1+, 1/2+}}...\| u_n \|_{X^{1+, 1/2+}}</math></center> | ||
where each factor <math>u_i\,</math> is allowed to be conjugated if desired. See [[ | where each factor <math>u_i\,</math> is allowed to be conjugated if desired. See [[Bibliography#St1997b|St1997b]], [[references:CoDeKnSt-p CoDeKnSt-p]]. | ||
<div class="MsoNormal" style="text-align: center"><center> | <div class="MsoNormal" style="text-align: center"><center> |
Revision as of 20:29, 28 July 2006
Schrodinger estimates
Solutions to the linear Schrodinger equation and its perturbations are either estimated in mixed space-time norms Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^q_t L^r_x} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^r_x L^q_t} , or in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X^{s,b}} spaces, defined by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \| u \|_{X^{s,b}} = \| u \|_{s,b} := \| \langle \xi\rangle^s \langle \tau -|\xi|^2\rangle^b \hat{u} \|_{L^2_{\tau,\xi}}.}
Note that these spaces are not invariant under conjugation.
Linear space-time estimates in which the space norm is evaluated first are known as Strichartz estimates. They are useful for NLS without derivatives, but are much less useful for derivative non-linearities. Other linear estimates include smoothing estimates and maximal function estimates. The Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X^{s,b}} spaces are used primarily for bilinear estimates, although more recently multilinear estimates have begun to appear. These spaces and estimates first appear in the context of the Schrodinger equation in [Bo1993], although the analogous spaces for the wave equation appeared earlier [RaRe1982], [Be1983] in the context of propogation of singularities. See also [Bo1993b], [KlMa1993].
Schrodinger Linear estimates
[More references needed here!]
On Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R^d} :
- If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in X^{0,1/2+}_{}}
, then
- (Energy estimate) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^\infty_t L^2_x.}
- (Strichartz estimates) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^{2(d+2)/d}_{x,t}}
references:Sz1997 Sz1977.
- More generally, f is in whenever Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1/q+n/2r = n/4, r < \infty}
, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q > 2\,.}
- The endpoint Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q=2, r = 2d/(d-2)\,} is true for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d >= 3\,} KeTa1998. When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=2\,} it fails even in the BMO case Mo1998, although it still is true for radial functions Ta2000b, [Stv-p].In fact the estimates are true assuming for non-radial functions some additional regularity in the angular variable Ta2000b, although there is a limit as to low little regularity one can impose [MacNkrNaOz-p].
- In the radial case there are additional weighted smoothing estimates available Vi2001
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=1\,} one also has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^4_tL^\infty_x.}
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=1\,} one can refine the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2\,} assumption on the data in rather technical ways on the Fourier side, see e.g. VaVe2001.
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=1\,,} the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^6_{t,x}} estimate has a maximizer [Kz-p2].This maximizer is in fact given by Gaussian beams, with a constant of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 12^{-1/12}\,} [Fc-p4].Similarly when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=2\,} with the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^4\,} estimate, which is also given by Gaussian beams with a constant of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2^{-1/2}\,.}
- More generally, f is in whenever Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1/q+n/2r = n/4, r < \infty}
, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q > 2\,.}
- (Kato estimates) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D^{1/2}\,}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^2_{x,loc}L^2_t}
Sl1987, Ve1988
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=1\,} one can improve this to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D^{1/2}\,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^\infty_xL^2_t.}
- (Maximal function estimates) In all dimensions one has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D^{-s} f \in L^2_{x,loc}L^\infty_t}
for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s > 1/2.\,}
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=1\,} one also has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D^{-1/4}\,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^4_{x}L^\infty_t.}
- When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=2\,} one also has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D^{-1/2}\,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^4_{x}L^\infty_t.} The Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle -1/2\,} can be raised to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle -1/2+1/32+ \epsilon\,} TaVa2000b, with the corresponding loss in the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^4\,} exponent dictated by scaling. Improvements are certainly possible.
- Variants of some of these estimates exist for manifolds, see [BuGdTz-p]
- Fixed time estimates for free solutions:
- (Energy estimate) If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in L^4} , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f\,} is also Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \in L^2\,} .
- (Decay estimate) If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(0) \in L^1} , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(t)\,} has an Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^\infty} norm of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle O(t^{-d/2}).\,}
- Interpolants between these two are very useful for proving Strichartz estimates and obtaining scattering.
On T:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X^{0,3/8}\,} embds into Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^4_{x,t}} Bo1993 (see also HimMis2001).
- embeds into Bo1993. One cannot remove the from the exponent, however it is conjectured in Bo1993 that one might be able to embed into
On :
- When embeds into (this is essentially in Bo1993)
- The endpoint is probably false in every dimension.
Strichartz estimates are also available on [#manifold more general manifolds], and in the [#potential presence of a potential].Inhomogeneous estimates are also available off
the line of duality; see [Fc-p2] for a discussion.
Schrodinger Bilinear Estimates
- On R2 we have the bilinear Strichartz estimate Bo1999:
- On R2 St1997, references:CoDeKnSt-p CoDeKnSt-p, references:Ta-p2 Ta-p2 we have the sharp estimates
- On R KnPoVe1996b we have
and BkOgPo1998
Also, if u has frequency and v has frequency then we have (see e.g. [CoKeStTkTa-p4])
and similarly for .
- The s indices on the right cannot be lowered, but perhaps the s indices on the left can be raised in analogy with the R2 estimates. The analogues on are also known KnPoVe1996b:
Schrodinger Trilinear estimates
- On R we have the following refinement to the Strichartz inequality [Gr-p2]:
Schrodinger Multilinear estimates
- In R2 we have the variant
where each factor is allowed to be conjugated if desired. See St1997b, references:CoDeKnSt-p CoDeKnSt-p.