Bilinear Airy estimates: Difference between revisions
From DispersiveWiki
Jump to navigationJump to search
m (More bib cleaning) |
|||
Line 9: | Line 9: | ||
The following bilinear estimates are known: | The following bilinear estimates are known: | ||
* The <math>-3/4+</math> estimate [[ | * The <math>-3/4+</math> estimate [[Bibliography#KnPoVe1996|KnPoVe1996]] on '''R'''<nowiki>:</nowiki> | ||
<center><math>\| u \partial_x v \|_{X^{-3/4+, -1/2+}} \lesssim \| u \|_{X^{-3/4+, 1/2+}} \| v \|_{X^{-3/4+, 1/2+}}</math></center> | <center><math>\| u \partial_x v \|_{X^{-3/4+, -1/2+}} \lesssim \| u \|_{X^{-3/4+, 1/2+}} \| v \|_{X^{-3/4+, 1/2+}}</math></center> | ||
Line 15: | Line 15: | ||
** The above estimate fails at the endpoint <math> -3/4</math>. [[ | ** The above estimate fails at the endpoint <math> -3/4</math>. [[Bibliography#NaTkTs2001|NaTkTs2001]] | ||
** As a corollary of this estimate we have the -3/8+ estimate [[ | ** As a corollary of this estimate we have the -3/8+ estimate [[Bibliography#CoStTk1999|CoStTk1999]] on '''R'''<nowiki>: If u and v have no low frequencies ( |\xi| <~ 1 ) then</nowiki> | ||
<center><math>\| u \partial_x v \|_{X^{{0, -1/2+}}} \lesssim \| u \|_{X^{-3/8+, 1/2+}} \| v \|_{X^{-3/8+, 1/2+}}</math></center> | <center><math>\| u \partial_x v \|_{X^{{0, -1/2+}}} \lesssim \| u \|_{X^{-3/8+, 1/2+}} \| v \|_{X^{-3/8+, 1/2+}}</math></center> | ||
* The -1/2 estimate [[ | * The -1/2 estimate [[Bibliography#KnPoVe1996|KnPoVe1996]] on '''T'''<nowiki>: if </nowiki><span class="SpellE">u,v</span> have mean zero, then for all s >= -1/2 | ||
<center><math>\| u \partial_x v\|_{X^{s, -1/2}} \lesssim \| u \|_{X^{s, 1/2}} \| v \|_{X^{s, 1/2}}</math></center> | <center><math>\| u \partial_x v\|_{X^{s, -1/2}} \lesssim \| u \|_{X^{s, 1/2}} \| v \|_{X^{s, 1/2}}</math></center> | ||
** The above estimate fails for <math>s < -1/2</math>. Also, one cannot replace <math>1/2, -1/2 by 1/2+, -1/2+</math>. [[ | ** The above estimate fails for <math>s < -1/2</math>. Also, one cannot replace <math>1/2, -1/2 by 1/2+, -1/2+</math>. [[Bibliography#KnPoVe1996|KnPoVe1996]] | ||
** This estimate also holds in the large period case if one is willing to lose a power of \lambda^{0+} in the constant. [[ | ** This estimate also holds in the large period case if one is willing to lose a power of \lambda^{0+} in the constant. [[Bibliography#CoKeStTkTa-p2 |CoKeStTkTa-p2]] | ||
* ''Remark''<nowiki>: In principle, a complete list of bilinear estimates could be obtained from | * ''Remark''<nowiki>: In principle, a complete list of bilinear estimates could be obtained from </nowiki>[[Bibliography#Ta-p2 |Ta-p2]]. | ||
[[Category:Estimates]] | [[Category:Estimates]] |
Revision as of 16:31, 31 July 2006
Algebraic identity
Much of the bilinear estimate theory for Airy equation rests on the following "three-wave resonance identity":
Estimates
The following bilinear estimates are known:
- The estimate KnPoVe1996 on R:
- The above estimate fails at the endpoint . NaTkTs2001
- As a corollary of this estimate we have the -3/8+ estimate CoStTk1999 on R: If u and v have no low frequencies ( |\xi| <~ 1 ) then
- The -1/2 estimate KnPoVe1996 on T: if u,v have mean zero, then for all s >= -1/2
- The above estimate fails for . Also, one cannot replace . KnPoVe1996
- This estimate also holds in the large period case if one is willing to lose a power of \lambda^{0+} in the constant. CoKeStTkTa-p2
- Remark: In principle, a complete list of bilinear estimates could be obtained from Ta-p2.