Dirac equations: Difference between revisions
No edit summary |
No edit summary |
||
Line 32: | Line 32: | ||
<center><math>D y = f y - y </math></center> | <center><math>D y = f y - y </math></center> | ||
<center><math>Box f = \underline{y} y </math></center> | <center><math>\Box f = \underline{y} y </math></center> | ||
where <math>y</math> is a spinor field (solving a coupled massive Dirac equation), <math>D</math> is the Dirac operator and <math>f</math> is a scalar (real) field. We put <br /> <math>y</math> in <math>H^{s_1}</math> and <math>( f , f _t)</math> in <math>H^{s_2} \times H^{s_2 - 1}</math>. | where <math>y</math> is a spinor field (solving a coupled massive Dirac equation), <math>D</math> is the Dirac operator and <math>f</math> is a scalar (real) field. We put <br /> <math>y</math> in <math>H^{s_1}</math> and <math>( f , f _t)</math> in <math>H^{s_2} \times H^{s_2 - 1}</math>. |
Revision as of 20:28, 3 August 2006
The Maxwell-Dirac equation
[More info on this equation would be greatly appreciated. - Ed.]
This equation essentially reads
where is a spinor field (solving a coupled massive Dirac equation), and is the Dirac operator with connection A. We put in and in .
- Scaling is .
- When , there is GWP for small smooth data Chd1973
- When there is LWP for in the Coulomb gauge Bou1999, and for in the Lorentz gauge Bou1996
- For in the Coulomb gauge this is in Bou1996
- This has recently been improved by Selberg to . Note that for technical reasons, lower-regularity results do not automatically imply higher ones when the regularity of one field (e.g. ) is kept fixed.
- LWP for smooth data was obtained in Grs1966
- GWP for small smooth data was obtained in Ge1991
- When , GWP for small smooth data is known (Psarelli?)
In the nonrelativistic limit this equation converges to a Maxwell-Poisson system for data in the energy space [BecMauSb-p2]; furthermore one has a local well-posedness result which grows logarithmically in the asymptotic parameter. Earlier work appears in MasNa2003.
Dirac-Klein-Gordon equation
[More info on this equation would be greatly appreciated. - Ed.]
This equation essentially reads
where is a spinor field (solving a coupled massive Dirac equation), is the Dirac operator and is a scalar (real) field. We put
in and in .
The energy class is essentially , but the energy density is not positive. However, the norm of is also positive and conserved..
- Scaling is .
- When there is GWP for Chd1973, Bou2000 and LWP for Bou2000.
- When there are some LWP results in Bou2001
Nonlinear Dirac equation
This equation essentially reads
where is a spinor field, is the mass, is a complex parameter, is the zeroth Pauli matrix, and is the spinor inner product.
- Scaling is (at least in the massless case ).
- In , LWP is known for when EscVe1997
- This can be improved to LWP in (and GWP for small data) if an epsilon of additional regularity as assumed in the radial variable [MacNkrNaOz-p]; in particular one has GWP for radial data.
- In , GWP is known for small data when [MacNaOz-p2].Some results on the nonrelativistic limit of this equation are also obtained in that paper.