Derivative non-linear Schrodinger equation: Difference between revisions

From DispersiveWiki
Jump to navigationJump to search
mNo edit summary
No edit summary
 
Line 29: Line 29:


In <math>d=2\,</math> one has GWP for small data when the nonlinearities are of the form <math>\underline{uDu} + u Du\,</math> [[De2002]].
In <math>d=2\,</math> one has GWP for small data when the nonlinearities are of the form <math>\underline{uDu} + u Du\,</math> [[De2002]].
Furthermore, for the work about sharp condition of global existence for derivative non-linear Schrodinger, see [[ShjZhj]].


[[Category:Equations]]
[[Category:Equations]]

Latest revision as of 10:50, 24 August 2006

By derivative non-linear Schrodinger (D-NLS) equations, we refer to equations of the form

where is an analytic function of , its spatial derivatives , and their complex conjugates which vanishes to at least second order at the origin. One particularly important class of such equations is the Schrodinger maps equation.

We often assume the natural gauge invariance condition

.

The main new difficulty here is the loss of regularity of one derivative in the non-linearity, which causes standard techniques such as the energy method to fail (since the energy estimate does not recover any regularity in the case of the Schrodinger equation). However, there are other estimates which can recover a full derivative for the inhomogeneous Schrodinger equation providing there is sufficient decay in space, and so one can still obtain well-posedness results for sufficiently smooth and regular data. In the analytic category some existence results can be found in SnTl1985, Ha1990.

An alternative strategy is to apply a suitable transformation in order to place the non-linearity in a good form. For instance, a term such as is preferable to (the Fourier transform is less likely to stay near the upper paraboloid, and these terms are more likely to disappear in energy estimates). One can often "gauge transform" the equation (in a manner dependent on the solution ) so that all bad terms are eliminated. In one dimension this can be done by fairly elementary methods (e.g. the method of integrating factors), but in higher dimensions one must use some pseudo-differential calculus.

In order to quantify the decay properties needed, we define denote the space of all functions for which is in ; thus measures regularity and measures decay. It is a well-known fact that the Schrodinger equation trades decay for regularity; for instance, data in instantly evolves to a solution locally in for the free Schrodinger equation and

  • If is an integer then one has LWP in Ci1999; see also Ci1996, Ci1995, Ci1994.
    • If is cubic or better then one can improve this to LWP in Ci1999. Furthermore, if one also has gauge invariance then data in evolves to a solution in for all non-zero times and all positive integers Ci1999.
    • If and is cubic or better then one has LWP in HaOz1994b.
      • For special types of cubic non-linearity one can in fact get GWP for small data in Oz1996.
    • LWP in for small data for sufficiently large , was shown in KnPoVe1993c. The solution was also shown to have derivatives in .
      • If is cubic or better one can take KnPoVe1993c.
      • If is quartic or better then one has GWP for small data in KnPoVe1995
      • For large data one still has LWP for sufficiently large Ci1995, Ci1994.


If the non-linearity consists mostly of the conjugate wave then one can do much better. For instance [Gr-p], when one can obtain LWP when , and is an integer; similarly when one has LWP when and is an integer. In particular one has GWP in when and and GWP in when and . These results apply in both the periodic and non-periodic setting.

Non-linearities such as in one dimension have been studied in HaNm2001b, with some asymptotic behaviour obtained.

In one has GWP for small data when the nonlinearities are of the form De2002.

Furthermore, for the work about sharp condition of global existence for derivative non-linear Schrodinger, see ShjZhj.