Bilinear wave estimates: Difference between revisions
From DispersiveWiki
Jump to navigationJump to search
mNo edit summary |
|||
Line 1: | Line 1: | ||
===Bilinear estimates=== | ===Bilinear estimates=== | ||
* Let <math>d>1</math>. If <math>\phi</math>, <math>\psi</math> are free <math>\dot H^{s_1}</math> and <math>\dot H^{s_2}</math> solutions respectively, then one can control <math>\phi\psi</math> in \dot X^{s,b} if and only if | * Let <math>d>1</math>. If <math>\phi</math>, <math>\psi</math> are free <math>\dot H^{s_1}</math> and <math>\dot H^{s_2}</math> solutions respectively, then one can control <math>\phi\psi</math> in <math>\dot X^{s,b}</math> if and only if | ||
** (Scaling) <math>s+b = s_1 + s_2 - (d-1)/2</math> | ** (Scaling) <math>s+b = s_1 + s_2 - (d-1)/2</math> | ||
** (Parallel interactions) <math>b \geq (3-d)/4</math> | ** (Parallel interactions) <math>b \geq (3-d)/4</math> |
Revision as of 01:50, 7 November 2006
Bilinear estimates
- Let . If , are free and solutions respectively, then one can control in if and only if
- (Scaling)
- (Parallel interactions)
- (Lack of smoothing)
- (Frequency cancellation)
- (No double endpoints) .
See FcKl2000. Null forms can also be handled by identities such as
- Some bilinear Strichartz estimates are also known. For instance, if , , are as in the linear Strichartz estimates , are solutions, then
as long as FcKl2000. Similar estimates for null forms also exist Pl2002; see also TaVa2000b, Ta-p4.