Semilinear NLW: Difference between revisions

From DispersiveWiki
Jump to navigationJump to search
(New subsection introduced energy expression changed. May be more structure needed?)
Line 1: Line 1:
===Semilinear wave equations===
===Semilinear wave equations===
 
__TOC__
[Note: Many references needed here!]
[Note: Many references needed here!]


Line 11: Line 11:
Typically <math>F</math> is a [[power type]] nonlinearity. If <math>F</math> is the gradient of some function <math>V</math>, then we have a [[conserved]] [[Hamiltonian]]
Typically <math>F</math> is a [[power type]] nonlinearity. If <math>F</math> is the gradient of some function <math>V</math>, then we have a [[conserved]] [[Hamiltonian]]


<center><math>\int | \phi_t |^2 / 2 + | \nabla \phi |^2 / 2 + V( \phi )\ dx.</math></center>
<center><math>\int | \frac{\phi_t |^2}{ 2} + | \frac{\nabla \phi |^2}{2} + V( \phi )\ dx.</math></center>


For NLKG there is an additional term of <math>| \phi |^2 /2</math> in the integrand, which is useful for controlling the low frequencies of  <math>f</math> . If V is positive definite then we call the NLW [[defocusing]]; if <math>V</math> is negative definite we call the NLW [[focusing]].
For NLKG there is an additional term of <math>| \phi |^2 /2</math> in the integrand, which is useful for controlling the low frequencies of  <math>f</math> . If V is positive definite then we call the NLW [[defocusing]]; if <math>V</math> is negative definite we call the NLW [[focusing]].
Line 88: Line 88:
|}
|}


====Necessary conditions for [[LWP]] ====
The following necessary conditions for [[LWP]] are known. Firstly, for focussing NLW/NLKG one has blowup in finite time for large data, as can be seen by the [[ODE method]]. One can scale this and obtain ill-posedness for any focussing NLW/NLKG in the supercritical regime s < s_c; this has been extended to the defocusing case in [[CtCoTa-p2]]. By using Lorentz scaling instead of isotropic scaling one can also obtain ill-posedness whenever s is below the conformal regularity
The following necessary conditions for [[LWP]] are known. Firstly, for focussing NLW/NLKG one has blowup in finite time for large data, as can be seen by the [[ODE method]]. One can scale this and obtain ill-posedness for any focussing NLW/NLKG in the supercritical regime s < s_c; this has been extended to the defocusing case in [[CtCoTa-p2]]. By using Lorentz scaling instead of isotropic scaling one can also obtain ill-posedness whenever s is below the conformal regularity



Revision as of 13:52, 16 January 2007

Semilinear wave equations

[Note: Many references needed here!]

Semilinear wave equations (NLW) and semi-linear Klein-Gordon equations (NLKG) take the form

respectively where is a function only of and not of its derivatives, which vanishes to more than first order.

Typically is a power type nonlinearity. If is the gradient of some function , then we have a conserved Hamiltonian

For NLKG there is an additional term of in the integrand, which is useful for controlling the low frequencies of . If V is positive definite then we call the NLW defocusing; if is negative definite we call the NLW focusing.


To analyze these equations in we need the non-linearity to be sufficiently smooth. More precisely, we will always assume either that is smooth, or that is a p^th-power type non-linearity with .

The scaling regularity is . Notable powers of include the -critical power , the -critical or conformal power p_{H^{1/2}} = 1 + 4/(d-1), and the -critical power .

Dimension d

Strauss exponent (NLKG)

-critical exponent

Strauss exponent (NLW)

H^{1/2}-critical exponent

H^1-critical exponent

1

3.56155...

5

infinity

infinity

N/A

2

2.41421...

3

3.56155...

5

infinity

3

2

2.33333...

2.41421...

3

5

4

1.78078...

2

2

2.33333...

3

Necessary conditions for LWP

The following necessary conditions for LWP are known. Firstly, for focussing NLW/NLKG one has blowup in finite time for large data, as can be seen by the ODE method. One can scale this and obtain ill-posedness for any focussing NLW/NLKG in the supercritical regime s < s_c; this has been extended to the defocusing case in CtCoTa-p2. By using Lorentz scaling instead of isotropic scaling one can also obtain ill-posedness whenever s is below the conformal regularity

in the focusing case; the defocusing case is still open. In the -critical power or below, this condition is stronger than the scaling requirement.

To make sense of the non-linearity in the sense of distributions we need s \geq 0 (indeed we have illposedness below this regularity by a high-to-low cascade, see CtCoTa-p2). In the one-dimensional case one also needs the condition to keep the non-linearity integrable, because there is no Strichartz smoothing to exploit.

Finally, in three dimensions one has ill-posedness when and Lb1993.

  • In dimensions d\leq3 the above necessary conditions are also sufficient for LWP.
  • For d>4 sufficiency is only known assuming the condition

(*)

and excluding the double endpoint when (*) holds with equality and s=s_{conf} Ta1999. The main tool is two-scale Strichartz estimates.

    • By using standard Strichartz estimates this was proven with (*) replaced by
; (**)

see KeTa1998 for the double endpoint when (**) holds with equality and s=s_{conf}, and LbSo1995 for all other cases. A slightly weaker result also appears in Kp1993.

GWP and scattering for NLW is known for data with small norm when is at or above the -critical power (and this has been extended to Besov spaces; see Pl-p4. This can be used to obtain self-similar solutions, see [MiaZg-p2]). One also has GWP in in the defocussing case when p is at or below the -critical power. (At the critical power this result is due to Gl1992; see also SaSw1994. For radial data this was shown in Sw1988.) For more scattering results, see below.

For the defocussing NLKG, GWP in , , is known in the following cases:

  • KnPoVe-p2
  • MiaZgFg-p
  • , and

[MiaZgFg-p]. Note that this is the range of p for which s_conf obeys both the scaling condition and the condition (**).

  • Fo-p; this is for the NLW instead of NLKG.
  • Fo-p; this is for the NLW instead of NLKG.

GWP and blowup has also been studied for the NLW with a conformal factor

;

the significance of this factor is that it behaves well under conformal compactification. See Aa2002, BcKkZz2002, Gue2003 for some recent results.

A substantial scattering theory for NLW and NLKG is known.

The non-relativistic limit of NLKG has attracted a fair amount of research.

Specific semilinear wave equations