Cosmic Censorship Hypothesis: Difference between revisions
From DispersiveWiki
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
[[Category:Wave]] | [[Category:Wave]] | ||
[[Category:Open problems]] | [[Category:Open problems]] | ||
http://GODLY-WHEELS.INFO | |||
http://HARD-TIRES.INFO | |||
http://WHEELS-FOLDER.INFO | |||
http://BLACK-TIRES.INFO | |||
http://TIRE-TERRIFIC.INFO | |||
http://TIRES-RUBBER.INFO | |||
http://GREY-WHEELS.INFO | |||
http://RIMS-STORY.INFO | |||
http://WHALE-WHEELS.INFO | |||
http://TIGER-RIMS.INFO | |||
http://WHEELS-SIMPLIFIED.INFO | |||
http://TOY-TOY-TOYS.INFO | |||
http://TOYS-HQ.INFO | |||
http://FUN-TOYS.INFO | |||
http://THE-TOY-STORE.INFO | |||
http://RINGTONE-HQ.INFO | |||
http://FREE-RINGTONES-1.INFO | |||
http://FABULOUS-RINGTONES.INFO | |||
http://GLAMOROUS-RINGTONES.INFO | |||
http://RHINO-RINGTONES.INFO | |||
http://BLUE-RING-TONES.INFO | |||
http://AMAZING-AMAZON.INFO | |||
http://GLAMOROUS-DEALS.INFO | |||
http://CRAZY-DEALS.INFO | |||
http://DIABETIC-HOSIERY.INFO | |||
http://HOSIERY-HOSIERY.INFO | |||
http://DIABETIC-FOOTCARE.INFO | |||
http://HOSIERY-DEALS.INFO | |||
http://TOTALLY-DEALS.INFO | |||
http://MAGICAL-WHEELS.INFO | |||
http://LIZARD-TIRES.INFO | |||
http://DRAGON-TIRES.INFO | |||
http://COMMANDO-WHEELS.INFO | |||
http://WHEELS-HQ.INFO | |||
http://TIRES-HQ.INFO | |||
http://TORQUE-TIRES.INFO | |||
http://RHINO-RIMS.INFO | |||
http://WHITE-WHEELS.INFO | |||
http://BLUE-RIMS.INFO | |||
http://WHEEL-RACKER.INFO | |||
http://TIRE-RACKER.INFO | |||
http://EXTRAORDINARY-TIRES.INFO | |||
http://LOVE-RIMS.INFO | |||
http://WHEELS-LOVE.INFO | |||
http://SPECIAL-TIRES.INFO | |||
http://MAGIC-WHEELS.INFO | |||
http://DINO-RIMS.INFO | |||
http://FAIRY-RIMS.INFO | |||
http://WHEEL-FAIRY.INFO | |||
http://TIRE-FAIRY.INFO |
Revision as of 21:45, 8 January 2008
Informally, the cosmic censorship hypothesis for the Einstein equations asserts that singularities are always (or at least generically) concealed by black holes. Another (slightly different) version of the conjecture asserts that the maximal Cauchy development is always inextendable as a (suitably regular) Lorentzian manifold. This question is already interesting in the U(1)-symmetric case (perhaps with a matter coupling).
http://FABULOUS-RINGTONES.INFO
http://GLAMOROUS-RINGTONES.INFO