Schrodinger:Hartree equation
Hartree equation
[Sketchy! More to come later. Contributions are of course very welcome and will be acknowledged. - Ed.]
The Hartree equation is of the form
where
and 0 < n < d. It can thus be thought of as a non-local cubic Schrodinger equation; the cubic NLS is in some sense a limit of this equation as n -> n (perhaps after suitable normalization of the kernel |x|^{-n}, which would otherwise blow up). The analysis divides into the short-range case n > 1, the long-range case 0 < n < 1, and the borderline (or critical) case n=1. Generally speaking, the smaller values of n are the hardest to analyze. The + sign corresponds to defocusing nonlinearity, the - sign corresopnds to focusing.
The H1 critical value of n is 4, in particular the equation is always subcritical in four or fewer dimensions. For n<4 one has global existence of energy solutions. For n=4 this is only known for small energy.
In the short-range case one has scattering to solutions of the free Schrodinger equations under suitable assumptions on the data. However this is not true in the other two cases references:HaTs1987 HaTs1987. For instance, in the borderline case, at large times t the solution usually resembles a free solution with initial data y, twisted by a Fourier multiplier with symbol exp(i V(hat{y}) ln t). (This can be seen formally by applying the pseudo-conformal transformation, discarding the Laplacian term, and solving the resulting ODE references#GiOz1993 GiOz1993). This creates modified wave operators instead of ordinary wave operators. A similar thing happens when 1/2 < n < 1 but ln t must be replaced by t^{n-1}/(n-1).
The existence and mapping properties of these operators is only partly known:
- When n > 2 and n=1, the wave operators map \hat{Hs} to \hat{Hs} for s > 1/2 and are continuous and open [Nak-p3] (see also references:GiOz1993 GiOz1993)
- For n>1 and n > 1 this is in references:NwOz1992 NwOz1992
- In the defocusing case, all solutions in suitable spaces have asymptotic states in L2, and one has asymptotic completeness when n > 4/3 references:HaTs1987 HaTs1987.
- For n < 1, n ³3, and 1 - n/2 < s < 1 this is in [Nak-p4]
- In the Gevrey and real analytic categories there are some large data results in references:GiVl2000 GiVl2000, references:GiVl2000b GiVl2000b, references:GiVl2001 GiVl2001, covering the cases n< 1 and n > 1.
- For small decaying data one has some invertibility of the wave operators references:HaNm1998 HaNm1998
- For n>1 and n > 1 this is in references:NwOz1992 NwOz1992