Schrodinger:Hartree equation

From DispersiveWiki
Revision as of 19:47, 28 July 2006 by Colliand (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

Hartree equation

[Sketchy! More to come later. Contributions are of course very welcome and will be acknowledged. - Ed.]

The Hartree equation is of the form

i ut + D u = V(u) u

where

V(u) = + |x|^{-n} * |u|2

and 0 < n < d. It can thus be thought of as a non-local cubic Schrodinger equation; the cubic NLS is in some sense a limit of this equation as n -> n (perhaps after suitable normalization of the kernel |x|^{-n}, which would otherwise blow up). The analysis divides into the short-range case n > 1, the long-range case 0 < n < 1, and the borderline (or critical) case n=1. Generally speaking, the smaller values of n are the hardest to analyze. The + sign corresponds to defocusing nonlinearity, the - sign corresopnds to focusing.

The H1 critical value of n is 4, in particular the equation is always subcritical in four or fewer dimensions. For n<4 one has global existence of energy solutions. For n=4 this is only known for small energy.

In the short-range case one has scattering to solutions of the free Schrodinger equations under suitable assumptions on the data. However this is not true in the other two cases references:HaTs1987 HaTs1987. For instance, in the borderline case, at large times t the solution usually resembles a free solution with initial data y, twisted by a Fourier multiplier with symbol exp(i V(hat{y}) ln t). (This can be seen formally by applying the pseudo-conformal transformation, discarding the Laplacian term, and solving the resulting ODE references#GiOz1993 GiOz1993). This creates modified wave operators instead of ordinary wave operators. A similar thing happens when 1/2 < n < 1 but ln t must be replaced by t^{n-1}/(n-1).

The existence and mapping properties of these operators is only partly known: