Non-relativistic limit
The non-relativistic limit of a relativistic equation (which thus involves the speed of light 'c') denotes the limit when . It is the opposite of the vanishing dispersion limit.
Non-relativistic limit of NLKG
By inserting a parameter (the speed of light), one can rewrite the nonlinear Klein-Gordon equation as
One can then ask for what happens in the non-relativistic limit (keeping the initial position fixed, and dealing with the initial velocity appropriately). In Fourier space, should be localized near the double hyperboloid
In the non-relativistic limit this becomes two paraboloids
and so one expects to resolve as
where , solve some suitable NLS.
A special case arises if one assumes to be small at time zero (say in some Sobolev norm). Then one expects to vanish and to get a scalar NLS. Many results of this nature exist, see [Mac-p], Nj1990, Ts1984, [MacNaOz-p], [Na-p]. In more general situations one expects and to evolve by a coupled NLS; see MasNa2002.
Heuristically, the frequency portion of the evolution should evolve in a Schrodinger-type manner, while the frequency portion of the evolution should evolve in a wave-type manner. (This is consistent with physical intuition, since frequency is proportional to momentum, and hence (in the nonrelativistic regime) to velocity).
A similar non-relativistic limit result holds for the [#mkg Maxwell-Klein-Gordon] system (in the Coulomb gauge), where the limiting equation is the coupled
Schrodinger-Poisson system
under reasonable hypotheses on the initial data [BecMauSb-p]. The asymptotic relation between the MKG-CG fields , , and the Schrodinger-Poisson fields u, v^+, v^- are
where (a variant of ).