Cubic NLS

From DispersiveWiki
Revision as of 05:14, 8 August 2006 by Tao (talk | contribs)
Jump to navigationJump to search
Cubic NLS
Description
Equation
Fields
Data class
Basic characteristics
Structure Hamiltonian
Nonlinearity semilinear
Linear component Schrodinger
Critical regularity
Criticality mass-subcritical;
energy-subcritical;
scattering-critical
Covariance Galilean
Theoretical results
LWP for
GWP varies
Related equations
Parent class NLS
Special cases on R, on T, on R^2, on T^2, on R^3, on R^4
Other related Schrodinger maps, mKdV, Zakharov


The cubic NLS equation

The cubic NLS is displayed on the box on the right. The sign + is defocusing, while the - sign is focusing. This equation is traditionally studied on Euclidean domains , but other domains are certainly possible.

In one spatial dimension the cubic NLS equation is completely integrable. but this is not the case in higher dimensions.

The cubic NLS can be viewed as an oversimplified model of the Schrodinger map equation. It also arises as the limit of a number of other equations, such as the modified Korteweg-de Vries equation and Zakharov system.

Scaling analysis

On Euclidean domains at least, the cubic NLS obeys the scale invariance

Thus the critical regularity is .

Specific domains