Zakharov system
The Zakharov system
The Zakharov system consists of a complex field u and a real field n which evolve according to the equations
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle i \partial_t^{} u + \Delta u = un}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Box n = -\Delta (|u|^2_{})}
thus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u} evolves according to a coupled Schrodinger equation, while Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n} evolves according to a coupled wave equation. We usually place the initial data Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u(0) \in H^{s_0}} , the initial position Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n(0) \in H^{s_1}} , and the initial velocity Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \partial_t n(0) \in H^{s_1 -1}} for some real Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s_0, s_1} .
This system is a model for the propagation of Langmuir turbulence waves in an unmagnetized ionized plasma [Zk1972]. Heuristically, u behaves like a solution cubic NLS, smoothed by 1/2 a derivative. If one sends the speed of light in Box to infinity, one formally recovers the cubic nonlinear Schrodinger equation. Local existence for smooth data – uniformly in the speed of light! - was established in [KnPoVe1995b] by energy and gauge transform methods; this was generalized to non-scalar situations in [Lau-p], [KeWg1998].
An obvious difficulty here is the presence of two derivatives in the non-linearity for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n} . To recover this large loss of derivatives one needs to use the separation between the paraboloid t = x2 and the light cone Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |t| = |x|} .
There are two conserved quantities: the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2_x} norm of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int |u|^2 dx }
and the energy
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int |\nabla u|^2 + \frac{|n|^2}{2} + \frac{|D^{-1}_x \partial_t n|^2}{2} + n |u|^2 dx.}
The non-quadratic term Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n|u|^2} in the energy becomes difficult to control in three and higher dimensions. Ignoring this part, one needs regularity in (1,0) to control the energy.
Zakharov systems do not have a true scale invariance, but the critical regularity is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (s_0,s_1) = ((d-3)/2, (d-2)/2)} .
Specific dimensions
- Zakharov system on R
- Zakharov system on T
- Zakharov system on R^2
- Zakharov system on R^3
- In dimensions d>4 LWP is known on R^d within an epsilon of the critical regularity [GiTsVl1997].