Generalized Korteweg-de Vries equation

From DispersiveWiki
Revision as of 05:04, 29 July 2006 by Tao (talk | contribs)
Jump to navigationJump to search

Half-line theory

The gKdV Cauchy-boundary problem on the half-line is

The sign of is important (it makes the influence of the boundary x=0 mostly negligible), the sign of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u \partial_x u} is not. The drift term is convenient for technical reasons; it is not known whether it is truly necessary.

  • LWP is known for initial data in and boundary data in when .
    • The techniques are based on KnPoVe1993 and a replacement of the IVBP with a forced IVP.
    • This has been improved to when .
    • More specific results are known for KdV, mKdV, gKdV-3, and gKdV-4.

Miscellaneous gKdV results

[Thanks to Nikolaos Tzirakis for some corrections - Ed.]

  • On R with k > 4, is LWP down to scaling: KnPoVe1993
    • Was shown for s>3/2 in GiTs1989
    • One has ill-posedness in the supercritical regime BirKnPoSvVe1996
    • For small data one has scattering KnPoVe1993c.Note that one cannot have scattering in except in the critical case k=4 because one can scale solitons to be arbitrarily small in the non-critical cases.
    • Solitons are -unstable BnSouSr1987
    • If one considers an arbitrary smooth non-linearity (not necessarily a power) then one has LWP for small data in St1995
  • On R with any k, gKdV-k is GWP in for s >= 1 KnPoVe1993, though for k >= 4 one needs the norm to be small; global weak solutions were constructed much earlier, with the same smallness assumption when k >= 4. This should be improvable below for all k.
  • On R with any k, gKdV-k has the norm growing like in time for any integer s >= 1 St1997b
  • On R with any non-linearity, a non-zero solution to gKdV cannot be supported on the half-line (or ) for two different times references:KnPoVe-p3 KnPoVe-p3, [KnPoVe-p4].
    • In the completely integrable cases k=1,2 this is in Zg1992
    • Also, a non-zero solution to gKdV cannot vanish on a rectangle in spacetime SauSc1987; see also Bo1997b.
    • Extensions to higher order gKdV type equations are in Bo1997b, [KnPoVe-p5].
  • On R with non-integer k, one has decay of for small decaying data if CtWs1991
    • A similar result for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle k > (5+\sqrt(73))/4 \sim 3.39... } was obtained in PoVe1990.
    • When k=2 solutions decay like , and when k=1 solutions decay generically like but like for exceptional data AbSe1977
  • In the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2} subcritical case 0 < k < 4, multisoliton solutions are asymptotically -stable [MtMeTsa-p]
  • A dissipative version of gKdV-k was analyzed in MlRi2001
  • On T with any k, gKdV-k has the norm growing like Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle t^{2(s-1)+}} in time for any integer s >= 1 St1997b
  • On T with k >= 3, gKdV-k is LWP for s >= 1/2 references:CoKeStTaTk-p3 CoKeStTkTa-p3
  • On T with k >= 3, gKdV-k is GWP for s >= 1 except in the focussing case St1997c