Generalized Korteweg-de Vries equation
From DispersiveWiki
Jump to navigationJump to search
Half-line theory
The gKdV Cauchy-boundary problem on the half-line is
The sign of is important (it makes the influence of the boundary x=0 mostly negligible), the sign of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u \partial_x u} is not. The drift term is convenient for technical reasons; it is not known whether it is truly necessary.
- LWP is known for initial data in and boundary data in when .
- The techniques are based on KnPoVe1993 and a replacement of the IVBP with a forced IVP.
- This has been improved to when .
- More specific results are known for KdV, mKdV, gKdV-3, and gKdV-4.
Miscellaneous gKdV results
[Thanks to Nikolaos Tzirakis for some corrections - Ed.]
- On R with k > 4, is LWP down to scaling: KnPoVe1993
- Was shown for s>3/2 in GiTs1989
- One has ill-posedness in the supercritical regime BirKnPoSvVe1996
- For small data one has scattering KnPoVe1993c.Note that one cannot have scattering in except in the critical case k=4 because one can scale solitons to be arbitrarily small in the non-critical cases.
- Solitons are -unstable BnSouSr1987
- If one considers an arbitrary smooth non-linearity (not necessarily a power) then one has LWP for small data in St1995
- On R with any k, gKdV-k is GWP in for s >= 1 KnPoVe1993, though for k >= 4 one needs the norm to be small; global weak solutions were constructed much earlier, with the same smallness assumption when k >= 4. This should be improvable below for all k.
- On R with any k, gKdV-k has the norm growing like in time for any integer s >= 1 St1997b
- On R with any non-linearity, a non-zero solution to gKdV cannot be supported on the half-line (or ) for two different times references:KnPoVe-p3 KnPoVe-p3, [KnPoVe-p4].
- On R with non-integer k, one has decay of for small decaying data if CtWs1991
- A similar result for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle k > (5+\sqrt(73))/4 \sim 3.39... } was obtained in PoVe1990.
- When k=2 solutions decay like , and when k=1 solutions decay generically like but like for exceptional data AbSe1977
- In the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2} subcritical case 0 < k < 4, multisoliton solutions are asymptotically -stable [MtMeTsa-p]
- A dissipative version of gKdV-k was analyzed in MlRi2001
- On T with any k, gKdV-k has the norm growing like Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle t^{2(s-1)+}} in time for any integer s >= 1 St1997b
- On T with k >= 3, gKdV-k is LWP for s >= 1/2 references:CoKeStTaTk-p3 CoKeStTkTa-p3
- Was shown for s >= 1 in St1997c
- Analytic well-posedness fails for s < 1/2 references:CoKeStTaTk-p3 CoKeStTkTa-p3, KnPoVe1996
- For arbitrary smooth non-linearities, weak solutions were constructed in references:Bo1993b Bo1993.
- On T with k >= 3, gKdV-k is GWP for s >= 1 except in the focussing case St1997c
- The estimates in references:CoKeStTaTk-p3 CoKeStTkTa-p3 suggest that this is improvable to 13/14 - 2/7k, but this has only been proven in the sub-critical case k=3 references:CoKeStTaTk-p3 CoKeStTkTa-p3. In the critical and super-critical cases there are some low-frequency issues which may require the techniques in [[references:KeTa-p KeTa-p]].