Quintic NLS
From DispersiveWiki
Jump to navigationJump to search
Quintic NLS on
- This equation may be viewed as a simpler version of [#dnls-3_on_R cubic DNLS], and is always at least as well-behaved. It has been proposed as a modifiation of the Gross-Pitaevski approximation for low-dimesional Bose liquids KolNewStrQi2000
- Scaling is , thus this is an [#L^2-critical_NLS L^2 critical NLS].
- LWP is known for CaWe1990, Ts1987.
- For the time of existence depends on the profile of the data as well as the norm.
- Below we have ill-posedness by Gallilean invariance considerations in both the focusing [KnPoVe-p] and defocusing [CtCoTa-p2] cases.
- GWP for in the defocussing case [Tzi-p]
- For this is in CoKeStTkTa-p6
- For this is in CoKeStTkTa-p4.
- For this is implicit in Tk-p.
- For this follows from LWP and Hamiltonian conservation.
- One has GWP and scattering for small data for any quintic non-linearity. The corresponding problem for large data and defocussing nonlinearity is very interesting, but probably very difficult, perhaps only marginally easier than the corresponding problem for the [#Cubic_NLS_on_R^2 2D cubic NLS]. It would suffice to show that the solution has a bounded norm in spacetime.
- Explicit blowup solutions (with large norm) are known in the focussing case BirKnPoSvVe1996. The blowup rate in is in these solutions. This is not the optimal blowup rate; in fact an example has been constructed where the blowup rate is [Per-p]. Furthermore, one always this blowup behavior (or possibly slower, though one must still blow up by at least ) whenever the energy is negative [MeRap-p], [MeRap-p2], and one either assumes that the mass is close to the critical mass or that is in .
- One can modify the explicit solutions from BirKnPoSvVe1996 and in fact create solutions which blow up at any collection of specified points in spacetime BoWg1997, Nw1998.
- Remark: This equation is pseudo-conformally invariant. GWP results in automatically transfer to GWP and scattering results in thanks to the pseudo-conformal transformation.
- Solitons are -unstable.
Quintic NLS on
- This equation may be viewed as a simpler version of cubic DNLS, and is always at least as well-behaved.
- Scaling is .
- LWP is known for Bo1993.
- For the solution map is not uniformly continuous from to for any [CtCoTa-p3].
- GWP is known in the defocusing case for (De Silva, Pavlovic, Staffilani, Tzirakis)
- For this is commented upon in [Bo-p2] and is a minor modification of [CoKeStTkTa-p].
- For one has GWP in the defocusing case, or in the focusing case with small norm, by Hamiltonian conservation.
- In the defocusing case one has GWP for random data whose Fourier coefficients decay like (times a Gaussian random variable) Bo1995c; this is roughly of the regularity of . Indeed one has an invariant measure. In the focusing case the same result holds assuming the norm is sufficiently small.
Quintic NLS on
- Scaling is .
- LWP is known for CaWe1990.
- For the time of existence depends on the profile of the data as well as the norm.
- For we have ill-posedness, indeed the H^s norm can get arbitrarily large arbitrarily quickly [CtCoTa-p2]. In the focusing case we have instantaneous blowup from the virial identity and scaling.
- GWP for by Hamiltonian conservation.
- This has been improved to - in CoKeStTkTa2003b. This result can of course be improved further.
- Scattering in the energy space Na1999c
- One also has GWP and scattering for small data for any quintic non-linearity.
Quintic NLS on
- Scaling is .
- LWP is known for CaWe1990.
- For the time of existence depends on the profile of the data as well as the norm.
- For we have ill-posedness, indeed the norm can get arbitrarily large arbitrarily quickly [CtCoTa-p2]. In the focusing case we have instantaneous blowup from the virial identity and scaling.
- GWP and scattering for in the defocusing case [CoKeStTkTa-p]
- For radial data this is in [Bo-p], Bo1999.
- Blowup can occur in the focussing case from Glassey's virial identity.