Mass critical NLS

From DispersiveWiki
Revision as of 06:26, 21 July 2007 by Tao (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2} critical NLS on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R^d}

The Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2\,} critical situation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s_c = 0\,} occurs when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p = 1 + 4/d\,} . Note that the power non-linearity is smooth in dimensions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=1\,} (quintic NLS) and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=2\,} (cubic NLS). One always has GWP and scattering in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2\,} for small data (see GiVl1978, GiVl1979, CaWe1990; the more precise statement in the focusing case that GWP holds when the mass is strictly less than the ground state mass is in Ws1983); in the large data defocusing case, GWP is known in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H^1\,} (and slightly below) but is only conjectured in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2\,.} No scattering result is known for large data, even in the radial smooth case.

In the focusing case, there is blowup for large Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2\,} data, as can be seen by applying the pseudoconformal transformation to the ground state solution. Up to the usual symmetries of the equation, this is the unique minimal mass blowup solution Me1993. This solution blows up in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H^1\,} like Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |t|^{-1}\,} as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle t \rightarrow 0-\,.} However, numerics suggest that there should be solutions that exhibit the much slower blowup Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |t|^{-1/2} (\log \log|t|)^{1/2}\,} LanPapSucSup1988; furthermore, this blowup is stable under perturbations in the energy space MeRap-p, at least when the mass is close to the critical mass. Note that scaling shows that blowup cannot be any slower than Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |t|^{-1/2}\,} .

The virial identity shows that blowup must occur when the energy is negative (which can only occur when the mass exceeds the ground state mass).Strictly speaking, the virial identity requires some decay on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u \,} namely that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x u\,} lies in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2\,} , however this restriction can be relaxed (OgTs1991, Nw1999, GgMe1995).

In one dimension d=1, the above blowup rate of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |t|^{-1/2}(log log|t|)^{1/2}\,} has in fact been achieved Per-p. Furthermore, one always this blowup behavior (or possibly slower, though one must still blow up by at least Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |t|^{-1/2}\,} ) whenever the energy is negative MeRap-p, MeRap-p2, and one either assumes that the mass is close to the critical mass or that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle xu\,} is in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2\,} . When the energy is zero, and one is not a ground state, then one has blowup like Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |t|^{-1/2} (log log |t|)^{1/2}\,} in at least one direction of time (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle t \rightarrow +\infty\,} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle t \rightarrow -\infty\,} ) MeRap-p, MeRap-p2.These results extend to higher dimensions as soon as a certain (plausible) spectral condition on the ground state is verified.

The exact nature of the blowup set is not yet fully understood, but there are some partial results.It appears that the generic rate of blowup is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |t|^{-1/2} (log log|t|)^{1/2}\,} ; the exceptional rate of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |t|^{-1}\,} can occur for the self-similar solutions and also for larger solutions BoWg1997, but this seems to be very rare compared to the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |t|^{-1/2} (log log|t|)^{1/2}\,} blowup solutions (which are open in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H^1\,} close to the critical mass MeRap-p).In fact close to the critical mass, there is a dichotomy, in that the blowup (if it occurs) is either Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |t|^{-1}\,} or faster, or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |t|^{-1/2} (log log |t|)^{1/2}\,} or slower MeRap-p, MeRap-p2.Also, near the blowup points the solution should have asymptotically zero energy Nw1999 and exhibit mass concentration Nw1992.

Conditions on the linearizability of this equation when the dispersion and nonlinearity are both sent to zero at controlled rates has been established in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d=1,2\,} in CarKer-p (and in the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2\,} -supercritical case in CarFerGal-p.A key role is played by the size of the linear solution in the relevant Strichartz space.