Schrodinger estimates: Difference between revisions

From DispersiveWiki
Jump to navigationJump to search
No edit summary
No edit summary
Line 9: Line 9:
Linear space-time estimates in which the space norm is evaluated first are known as Strichartz estimates.  They are useful for NLS without derivatives, but are much less useful for derivative non-linearities.  Other linear estimates include smoothing estimates and maximal function estimates.    The X^{s,b} spaces are used primarily for bilinear estimates, although more recently multilinear estimates have begun to appear.  These spaces and estimates first appear in the context of the Schrodinger equation in [Bo1993], although the analogous spaces for the wave equation appeared earlier [RaRe1982], [Be1983] in the context of propogation of singularities.  See also [Bo1993b], [KlMa1993].
Linear space-time estimates in which the space norm is evaluated first are known as Strichartz estimates.  They are useful for NLS without derivatives, but are much less useful for derivative non-linearities.  Other linear estimates include smoothing estimates and maximal function estimates.    The X^{s,b} spaces are used primarily for bilinear estimates, although more recently multilinear estimates have begun to appear.  These spaces and estimates first appear in the context of the Schrodinger equation in [Bo1993], although the analogous spaces for the wave equation appeared earlier [RaRe1982], [Be1983] in the context of propogation of singularities.  See also [Bo1993b], [KlMa1993].


[[Category:Estimates]]
===Schrodinger Linear estimates===
[More references needed here!]
On <math>R^d</math>:
* If <math> f \in X^{0,1/2+}_{}</math>, then
** (Energy estimate) <math>f  \in L^\infty_t L^2_x.</math>
** (Strichartz estimates) <math>f \in L^{2(d+2)/d}_{x,t}</math> [[references:Sz1997 Sz1977]].
*** More generally, <font face="Symbol">f</font> is in <math>L^q_t L^r_x</math> whenever <math>1/q+n/2r = n/4, r < \infty</math>, and <math>q > 2\,.</math>
**** The endpoint <math>q=2, r = 2d/(d-2)\,</math> is true for <math>d >= 3\,</math>[[references:KeTa1998 KeTa1998]]. When <math>d=2\,</math> it fails even in the BMO case [[references:Mo1998 Mo1998]], although it still is true for radial functions [[references:Ta2000b Ta2000b]], [Stv-p].In fact the estimates are true assuming for non-radial functions some additional regularity in the angular variable [[references:Ta2000b Ta2000b]], although there is a limit as to low little regularity one can impose [MacNkrNaOz-p].
**** In the radial case there are additional weighted smoothing estimates available [[references:Vi2001 Vi2001]]
**** When <math>d=1\,</math> one also has <math>f \in L^4_tL^\infty_x.</math>
**** When <math>d=1\,</math> one can refine the <math>L^2\,</math> assumption on the data in rather technical ways on the Fourier side, see e.g. [[references:VaVe2001 VaVe2001]].
**** When <math>d=1\,,</math> the <math>L^6_{t,x}</math> estimate has a maximizer [Kz-p2].This maximizer is in fact given by Gaussian beams, with a constant of <math>12^{-1/12}\,</math> [Fc-p4].Similarly when <math>d=2\,</math> with the <math>L^4\,</math> estimate, which is also given by Gaussian beams with a constant of <math>2^{-1/2}\,.</math>
** (Kato estimates) <math>D^{1/2}\,</math> <math>f \in L^2_{x,loc}L^2_t</math> [[references:Sl1987 Sl1987]], [[references:Ve1988 Ve1988]]
*** When <math>d=1\,</math> one can improve this to <math>D^{1/2}\,</math> <math>f \in L^\infty_xL^2_t.</math>
** (Maximal function estimates) In all dimensions one has <math>D^{-s} f \in L^2_{x,loc}L^\infty_t</math> for all <math>s > 1/2.\,</math>
*** When <math>d=1\,</math> one also has <math>D^{-1/4}\,</math> <math>f \in L^4_{x}L^\infty_t.</math>
*** When <math>d=2\,</math> one also has <math>D^{-1/2}\,</math> <math>f \in L^4_{x}L^\infty_t.</math> The <math>-1/2\,</math> can be raised to <math>-1/2+1/32+ \epsilon\,</math> [[references:TaVa2000b TaVa2000b]], with the corresponding loss in the <math>L^4\,</math> exponent dictated by scaling. Improvements are certainly possible.
** Variants of some of these estimates exist for manifolds, see [BuGdTz-p]
* Fixed time estimates for free solutions:
** (Energy estimate) If <math>f \in L^4</math>, then <math>f\,</math> is also <math>\in L^2\,</math>.
** (Decay estimate) If <math>f(0) \in L^1</math>, then <math>f(t)\,</math> has an <math>L^\infty</math> norm of <math>O(t^{-d/2}).\,</math>
** Interpolants between these two are very useful for proving Strichartz estimates and obtaining scattering.
On T:
* <math>X^{0,3/8}\,</math> embds into <math>L^4_{x,t}</math> [[references:Bo1993 Bo1993]] (see also [[references:HimMis2001 HimMis2001]]).
* <math>X^{0+,1/2+}\,</math> embeds into <math>L^6_{x,t}</math> [[references:Bo1993 Bo1993]]. One cannot remove the <math>+\,</math> from the <math>0+\,</math> exponent, however it is conjectured in [[references:Bo1993 Bo1993]] that one might be able to embed <math>X^{0,1/2+}\,</math> into <math>L^{6-}_{x,t}.</math>
On <math>T^d\,</math>:
* When <math>d >= 1, X^{d/4 - 1/2+,1/2+}\,</math> embeds into <math>L^4_{x,t}</math> (this is essentially in [[references:Bo1993 Bo1993]])
** The endpoint <math>d/4 - 1/2\,</math> is probably false in every dimension.
Strichartz estimates are also available on [#manifold more general manifolds], and in the [#potential presence of a potential].Inhomogeneous estimates are also available off
the line of duality; see [Fc-p2] for a discussion.
[[Category:Estimates]]
===Schrodinger Bilinear Estimates===
* On R<sup>2</sup> we have the bilinear Strichartz estimate [[references:Bo1999 Bo1999]]:
<center><math>\| uv \|_{X^{1/2+, 0}} \leq \| u \|_{X^{1/2+, 1/2+}} \| v \|_{X^{0+, 1/2+}}</math></center>
* On R<sup>2</sup> [[references:St1997 St1997]], [[references:CoDeKnSt-p CoDeKnSt-p]], [[references:Ta-p2 Ta-p2]] we have the sharp estimates
<center><math>\| \underline{u}\underline{v} \|_{X^{0, -1/2+}} \leq \| u \|_{X^{-1/2+, 1/2+}} \| v \|_{X^{-1/2+, 1/2+}}</math></center>
<center><math>\| \underline{u}\underline{v} \|_{X^{-1/2-, -1/2+}} \leq \| u \|_{X^{-3/4+, 1/2+}} \| v \|_{X^{-3/4+, 1/2+}}</math></center>
<center><math>\| uv \|_{X^{-1/2-, -1/2+}} \leq \| u \|_{X^{-3/4+, 1/2+}} \| v \|_{X^{-3/4+, 1/2+}}</math></center>
<center><math>\| u\underline{v} \|_{X^{-1/4+, -1/2+}} \leq \| u \|_{X^{-1/4+, 1/2+}} \| v \|_{X^{-1/4+, 1/2+}}</math></center>
* On R [[references:KnPoVe1996b KnPoVe1996b]] we have
<center><math>\| \underline{u}\underline{v} \|_{X^{-3/4-, -1/2+}} \leq \| u \|_{X^{-3/4+, 1/2+}} \| v \|_{X^{-3/4+, 1/2+}}</math></center>
<center><math>\| uv \|_{X^{-3/4+, -1/2+}} \leq \| u \|_{X^{-3/4+, 1/2+}} \| v \|_{X^{-3/4+, 1/2+}}</math></center>
<center><math>\| u\underline{v} \|_{X^{-1/4+, -1/2+}} \leq \| u \|_{X^{-1/4+, 1/2+}} \| v \|_{X^{-1/4+, 1/2+}}</math></center>
and [[references:BkOgPo1998 BkOgPo1998]]
<center><math>\| uv \|_{L^\infty_t H^{1/3}_x} \leq \| u \|_{X^{0, 1/2+}} \| v \|_{X^{0, 1/2+}}</math></center>
Also, if u has frequency <math>|\epsilon| \approx R\,</math> and v has frequency <math>|\epsilon| << R\,</math> then we have (see e.g. [CoKeStTkTa-p4])
<center><math>\| uv \|_{X^{1/2, 0}} \leq \| u \|_{X^{0, 1/2+}} \| v \|_{X^{0, 1/2+}}</math></center>
and similarly for <math>\underline{u}v, u\underline{v}, \underline{uv}\,</math> . <br />
* The s indices on the right cannot be lowered, but perhaps the s indices on the left can be raised in analogy with the R<sup>2</sup> estimates. The analogues on <math>T</math> are also known [[references:KnPoVe1996b KnPoVe1996b]]:
<center><math>\| \underline{u}\underline{v} \|_{X^{-1/2-, -1/2+}} \leq \| u \|_{X^{-1/2+, 1/2+}} \| v \|_{X^{-1/2+, 1/2+}}</math></center>
<center><math>\| uv \|_{X^{-3/4+, -1/2+}} \leq \| u \|_{X^{-1/2+, 1/2+}} \| v \|_{X^{-1/2+, 1/2+}}</math></center>
<center><math>\| u\underline{v} \|_{X^{0, -1/2+}} \leq \| u \|_{X^{0, 1/2+}} \| v \|_{X^{0, 1/2+}}</math></center>
<div class="MsoNormal" style="text-align: center"><center>
----
</center></div>
[[Category:Estimates]]
===Schrodinger Trilinear estimates===
* On R we have the following refinement to the <math>L^6/,</math> Strichartz inequality [Gr-p2]:
<center><math>\| uvw \|_{X^{0, 0}} \leq \| u \|_{X^{0, 1/2+}} \| v \|_{X^{-1/4, 1/2+}} \| w \|_{X^{1/4, 1/2+}}</math></center>
<div class="MsoNormal" style="text-align: center"><center>
----
</center></div>
[[Category:Estimates]]
===Schrodinger Multilinear estimates===
* In R<sup>2</sup> we have the variant
<center><math>\| u_{1}...u_{n} \|_{X^{1/2+, 1/2+}} \leq \| u_1 \|_{X^{1+, 1/2+}}...\| u_n \|_{X^{1+, 1/2+}}</math></center>
where each factor <math>u_i\,</math> is allowed to be conjugated if desired. See [[references:St1997b St1997b]], [[references:CoDeKnSt-p CoDeKnSt-p]].
<div class="MsoNormal" style="text-align: center"><center>
----
</center></div>
[[Category:Estimates]]
[[Category:Estimates]]

Revision as of 18:28, 28 July 2006

Schrodinger estimates

Solutions to the linear Schrodinger equation and its perturbations are either estimated in mixed space-time norms or , or in spaces, defined by

Note that these spaces are not invariant under conjugation.

Linear space-time estimates in which the space norm is evaluated first are known as Strichartz estimates. They are useful for NLS without derivatives, but are much less useful for derivative non-linearities. Other linear estimates include smoothing estimates and maximal function estimates. The X^{s,b} spaces are used primarily for bilinear estimates, although more recently multilinear estimates have begun to appear. These spaces and estimates first appear in the context of the Schrodinger equation in [Bo1993], although the analogous spaces for the wave equation appeared earlier [RaRe1982], [Be1983] in the context of propogation of singularities. See also [Bo1993b], [KlMa1993].



Schrodinger Linear estimates

[More references needed here!]

On :

  • If , then
    • (Energy estimate)
    • (Strichartz estimates) references:Sz1997 Sz1977.
      • More generally, f is in whenever , and
        • The endpoint is true for references:KeTa1998 KeTa1998. When it fails even in the BMO case references:Mo1998 Mo1998, although it still is true for radial functions references:Ta2000b Ta2000b, [Stv-p].In fact the estimates are true assuming for non-radial functions some additional regularity in the angular variable references:Ta2000b Ta2000b, although there is a limit as to low little regularity one can impose [MacNkrNaOz-p].
        • In the radial case there are additional weighted smoothing estimates available references:Vi2001 Vi2001
        • When one also has
        • When one can refine the assumption on the data in rather technical ways on the Fourier side, see e.g. references:VaVe2001 VaVe2001.
        • When the estimate has a maximizer [Kz-p2].This maximizer is in fact given by Gaussian beams, with a constant of [Fc-p4].Similarly when with the estimate, which is also given by Gaussian beams with a constant of
    • (Kato estimates) references:Sl1987 Sl1987, references:Ve1988 Ve1988
      • When one can improve this to
    • (Maximal function estimates) In all dimensions one has for all
      • When one also has
      • When one also has The can be raised to references:TaVa2000b TaVa2000b, with the corresponding loss in the exponent dictated by scaling. Improvements are certainly possible.
    • Variants of some of these estimates exist for manifolds, see [BuGdTz-p]
  • Fixed time estimates for free solutions:
    • (Energy estimate) If , then is also .
    • (Decay estimate) If , then has an norm of
    • Interpolants between these two are very useful for proving Strichartz estimates and obtaining scattering.

On T:

  • embds into references:Bo1993 Bo1993 (see also references:HimMis2001 HimMis2001).
  • embeds into references:Bo1993 Bo1993. One cannot remove the from the exponent, however it is conjectured in references:Bo1993 Bo1993 that one might be able to embed into

On :

  • When embeds into (this is essentially in references:Bo1993 Bo1993)
    • The endpoint is probably false in every dimension.

Strichartz estimates are also available on [#manifold more general manifolds], and in the [#potential presence of a potential].Inhomogeneous estimates are also available off

the line of duality; see [Fc-p2] for a discussion.

Schrodinger Bilinear Estimates

and references:BkOgPo1998 BkOgPo1998

Also, if u has frequency and v has frequency then we have (see e.g. [CoKeStTkTa-p4])

and similarly for .

  • The s indices on the right cannot be lowered, but perhaps the s indices on the left can be raised in analogy with the R2 estimates. The analogues on are also known references:KnPoVe1996b KnPoVe1996b:

Schrodinger Trilinear estimates

  • On R we have the following refinement to the Strichartz inequality [Gr-p2]:

Schrodinger Multilinear estimates

  • In R2 we have the variant

where each factor is allowed to be conjugated if desired. See references:St1997b St1997b, references:CoDeKnSt-p CoDeKnSt-p.