Schrodinger equations: Difference between revisions

From DispersiveWiki
Jump to navigationJump to search
mNo edit summary
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
==Overview==
==Overview==


The [[free Schrodinger equation]]
There are many '''nonlinear Schrodinger equations''' in the literature, all of which are perturbations of one sort or another of the [[free Schrodinger equation]].  One general class of such equations takes the form
 
<center><math>i \partial_t u + \Delta u = 0</math></center>
 
where u is a complex-valued function in <math>R \times R^d</math>, describes the evolution of a free non-relativistic quantum particle in d spatial dimensions. This equation can be modified in many ways, notably by adding a potential or an obstacle, but we shall be interested in non-linear perturbations such as


<center><math>i \partial_t u + \Delta u = f (u, \overline{u}, Du, D \overline{u})</math></center>
<center><math>i \partial_t u + \Delta u = f (u, \overline{u}, Du, D \overline{u})</math></center>


where <math>D</math> denotes spatial differentiation. In such full generality, we refer to this equation as a [[derivative non-linear Schrodinger equation]] (D-NLS). If the non-linearity does not contain derivatives then we refer to this equation as a [[semilinear Schrodinger equation]] (NLS). These equations (particularly the [[cubic NLS]]) arise as model equations from several areas of physics.
where <math>D</math> denotes spatial differentiation. In such full generality, we refer to this equation as a [[derivative non-linear Schrodinger equation]] (D-NLS). If the non-linearity does not contain derivatives then we refer to this equation as a [[semilinear Schrodinger equation]] (NLS). These equations (particularly the [[cubic NLS]]) arise as model equations from several areas of physics.
Some ''linear'' perturbations of the free Schrodinger equation are also of interest in the nonlinear theory (in part because one can view nonlinear equations as linear equations in which certain coefficients themselves depend on the solution).  For instance, one can add a potential term <math>Vu</math> to the right-hand side, yielding the [[Schrodinger equation with potential]].  Or one replace the Laplacian <math>\Delta = \partial_k \partial_k</math> with a covariant Laplacian <math>(\partial_k + i A_k)(\partial_k + i A_k)</math>, leading to the [[magnetic Schrodinger equation]].  Finally, one can replace the underlying spatial domain <math>R^d</math> with a Riemannian manifold <math>(M,g)</math>, and the Laplacian with the Laplace-Beltrami operator <math>\Delta_g</math>, yielding the [[Schrodinger equation on manifolds]].  One can also allow the manifolds to have boundaries (and assume appropriate boundary conditions), leading to the [[Schrodinger equation with obstacles]].
One can combine these linear perturbations with a nonlinear one, leading for instance to the [[NLS with potential]] and the [[NLS on manifolds and obstacles]].


One can generalize both the linear and nonlinear perturbations to these equations and consider
One can generalize both the linear and nonlinear perturbations to these equations and consider
the class of [[quasilinear Schrodinger equations]] or even [[fully nonlinear Schrodinger equations]].  Needless to say, these equations are significantly more difficult to analyse than the simpler model cases discussed above.
the class of [[quasilinear Schrodinger equations]] or even [[fully nonlinear Schrodinger equations]].  Needless to say, these equations are significantly more difficult to analyse than the simpler model cases discussed above.
One can combine these nonlinear perturbations with a [[free Schrodinger equation|linear perturbation]], leading for instance to the [[NLS with potential]] and the [[NLS on manifolds and obstacles]].


The perturbative theory of nonlinear Schrodinger equations (and the [[NLS|semilinear Schrodinger equations]] in particular) rests on a number of [[Schrodinger estimates|linear and nonlinear estimates for the free Schrodinger equation]].
The perturbative theory of nonlinear Schrodinger equations (and the [[NLS|semilinear Schrodinger equations]] in particular) rests on a number of [[Schrodinger estimates|linear and nonlinear estimates for the free Schrodinger equation]].


==Specific Schrodinger Equations==
==Specific Schrodinger Equations==


Monomial [[semilinear Schrodinger equation]]s are indexed by the degree of the nonlinearity and the spatial domain. A taxonomy of these and other specific Schrodinger equations appears on the [[Schrodinger:specific equations|specific equations]] page.
Monomial [[semilinear Schrodinger equation]]s can indexed by the degree of the nonlinearity, as follows.


===Quadratic NLS===
===Quadratic NLS===


Equations of the form
[[NLS]] equations of the form


<math> i \partial_t u + \Delta u = Q(u, \overline{u})</math>
<math> i \partial_t u + \Delta u = Q(u, \overline{u})</math>


which <math>Q(u, \overline{u})</math> a quadratic function of its arguments are [[quadratic NLS|quadratic nonlinear Schrodinger equations]].  They are mass-critical in four dimensions.
with <math>Q(u, \overline{u})</math> a quadratic function of its arguments are [[quadratic NLS|quadratic nonlinear Schrodinger equations]].  They are mass-critical in four dimensions.


===Cubic NLS===
===Cubic NLS===
Line 70: Line 65:
===Higher order NLS===
===Higher order NLS===


One can study higher-order NLS equations in which the Laplacian is replaced by a higher power.One class of such examples comes from the infinite hierarchy of commuting flows arising from the completely integrable [[cubic NLS]] on <math>R</math>.  Another is the [[nonlinear Schrodinger-Airy system]].
One can study higher-order NLS equations in which the Laplacian is replaced by a higher power. One class of such examples comes from the infinite hierarchy of commuting flows arising from the completely integrable [[cubic NLS]] on <math>R</math>.  Another is the [[nonlinear Schrodinger-Airy system]].  A third class arises from the elliptic case of the [[Zakharov-Schulman system]].


===Schrodinger maps===
===Schrodinger maps===


A geometric Schodinger equation that has been intensively studied is the [[Schrodinger maps|Schrodinger map equation]].  This is the Schrodinger counterpart of the [[wave maps equation]].
A geometric [[derivative non-linear Schrodinger equation]] that has been intensively studied is the [[Schrodinger maps|Schrodinger map equation]].  This is the Schrodinger counterpart of the [[wave maps equation]].


===Cubic DNLS on <math>R</math>===
===Cubic DNLS on <math>R</math>===
Line 82: Line 77:
===Hartree Equation===
===Hartree Equation===


The [[Hartree equation]] has a nonlocal nonlinearity given by convolution.
The [[Hartree equation]] has a nonlocal nonlinearity given by convolution, as does the very similar [[Schrodinger-Poisson system]], and certain cases of the [[Davey-Stewartson system]].


===Maxwell-Schrodinger system===
===Maxwell-Schrodinger system===


A Schrodinger-wave system closely related to the [[Maxwell-Klein-Gordon equation]] is the [[Maxwell-Schrodinger system]].
A Schrodinger-wave system closely related to the [[Maxwell-Klein-Gordon equation]] is the [[Maxwell-Schrodinger system]].
[[Category:Schrodinger]]
[[Category:Equations]]

Latest revision as of 03:44, 8 February 2011

Overview

There are many nonlinear Schrodinger equations in the literature, all of which are perturbations of one sort or another of the free Schrodinger equation. One general class of such equations takes the form

where denotes spatial differentiation. In such full generality, we refer to this equation as a derivative non-linear Schrodinger equation (D-NLS). If the non-linearity does not contain derivatives then we refer to this equation as a semilinear Schrodinger equation (NLS). These equations (particularly the cubic NLS) arise as model equations from several areas of physics.

One can generalize both the linear and nonlinear perturbations to these equations and consider the class of quasilinear Schrodinger equations or even fully nonlinear Schrodinger equations. Needless to say, these equations are significantly more difficult to analyse than the simpler model cases discussed above.

One can combine these nonlinear perturbations with a linear perturbation, leading for instance to the NLS with potential and the NLS on manifolds and obstacles.

The perturbative theory of nonlinear Schrodinger equations (and the semilinear Schrodinger equations in particular) rests on a number of linear and nonlinear estimates for the free Schrodinger equation.


Specific Schrodinger Equations

Monomial semilinear Schrodinger equations can indexed by the degree of the nonlinearity, as follows.

Quadratic NLS

NLS equations of the form

with a quadratic function of its arguments are quadratic nonlinear Schrodinger equations. They are mass-critical in four dimensions.

Cubic NLS

The cubic nonlinear Schrodinger equation is of the form

They are completely integrable in one dimension, mass-critical in two-dimensions, and energy-critical in four dimensions.

Quartic NLS

A nonlinear Schrodinger equation with nonlinearity of degree 4 is a quartic nonlinear Schrodinger equation.

Quintic NLS

NLS equations of the form

are quintic nonlinear Schrodinger equations. They are mass-critical in one dimension and energy-critical in three dimensions.

Septic NLS

NLS equations of the form

are septic nonlinear Schrodinger equations.

-critical NLS

The nonlinear Schrodinger equation

posed for is scaling invariant in . This family of nonlinear Schrodinger equations is therefore called the mass critical nonlinear Schrodinger equation.

Higher order NLS

One can study higher-order NLS equations in which the Laplacian is replaced by a higher power. One class of such examples comes from the infinite hierarchy of commuting flows arising from the completely integrable cubic NLS on . Another is the nonlinear Schrodinger-Airy system. A third class arises from the elliptic case of the Zakharov-Schulman system.

Schrodinger maps

A geometric derivative non-linear Schrodinger equation that has been intensively studied is the Schrodinger map equation. This is the Schrodinger counterpart of the wave maps equation.

Cubic DNLS on

The deriviative cubic nonlinear Schrodinger equation has nonlinearity of the form

Hartree Equation

The Hartree equation has a nonlocal nonlinearity given by convolution, as does the very similar Schrodinger-Poisson system, and certain cases of the Davey-Stewartson system.

Maxwell-Schrodinger system

A Schrodinger-wave system closely related to the Maxwell-Klein-Gordon equation is the Maxwell-Schrodinger system.