Quartic NLS

From DispersiveWiki
Jump to navigationJump to search

Quartic NLS on

  • Scaling is .
  • For any quartic non-linearity one can obtain LWP for CaWe1990
    • Below we have ill-posedness by Gallilean invariance considerations in both the focusing KnPoVe-p and defocusing CtCoTa-p2 cases.
  • If the quartic non-linearity is of type then one can obtain LWP for For one has LWP for , while for the other three types , , or one has LWP for Gr-p2.
  • In the Hamiltonian case (a non-linearity of type ) we have GWP for by conservation. In the other cases it is not clear whether there is any reasonable GWP result, except possibly for very small data.

Quartic NLS on

  • For any quartic non-linearity one has LWP for Bo1993.
  • If the quartic non-linearity is of type then one can obtain LWP for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s > -1/6\,} , Gr-p2.
  • If the nonlinearity is of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |u|^3 u\,} type one has GWP for random data whose Fourier coefficients decay like Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1/|k|\,} (times a Gaussian random variable) Bo1995c. Indeed one has an invariant measure.

Quartic NLS on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R^2}

  • Scaling is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s_c = 1/3\,.}
  • For any quartic non-linearity one can obtain LWP for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s \ge s_c\,} CaWe1990.
    • For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s<s_c\,} we have ill-posedness, indeed the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H^s\,} norm can get arbitrarily large arbitrarily quickly CtCoTa-p2. In the focusing case we have instantaneous blowup from the virial identity and scaling.
  • In the Hamiltonian case (a non-linearity of type Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |u|^3 u\,} ) we have GWP for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s \ge 1\,} Ka1986.
    • This has been improved to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s > 1-e\,} in CoKeStTkTa2003c in the defocusing Hamiltonian case. This result can of course be improved further.
    • Scattering in the energy space Na1999c in the defocusing Hamiltonian case.
    • One also has GWP and scattering for small Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H^{1/3}\,} data for any quintic non-linearity.