Dirac equations: Difference between revisions

From DispersiveWiki
Jump to navigationJump to search
m Dirac Equations moved to Dirac equations: Uniformity in naming
m style
Line 1: Line 1:
====The Maxwell-Dirac equation====
This article describes several equations named after [http://en.wikipedia.org/wiki/Paul_Dirac Paul Dirac].
__TOC__
==The Maxwell-Dirac equation==


[More info on this equation would be greatly appreciated. - Ed.]
[More info on this equation would be greatly appreciated. - Ed.]
Line 21: Line 23:
In the nonrelativistic limit this equation converges to a Maxwell-Poisson system for data in the energy space [[BecMauSb-p2]]; furthermore one has a local well-posedness result which grows logarithmically in the asymptotic parameter. Earlier work appears in [[MasNa2003]].
In the nonrelativistic limit this equation converges to a Maxwell-Poisson system for data in the energy space [[BecMauSb-p2]]; furthermore one has a local well-posedness result which grows logarithmically in the asymptotic parameter. Earlier work appears in [[MasNa2003]].
   
   
 
==Dirac-Klein-Gordon equation==
====Dirac-Klein-Gordon equation====


[More info on this equation would be greatly appreciated. - Ed.]
[More info on this equation would be greatly appreciated. - Ed.]
Line 39: Line 40:
* When <math>n=2</math> there are some LWP results in [[Bou2001]]
* When <math>n=2</math> there are some LWP results in [[Bou2001]]
   
   
 
==Nonlinear Dirac equation==
====Nonlinear Dirac equation====


This equation essentially reads
This equation essentially reads
Line 53: Line 53:
* In <math>R^3</math>, GWP is known for small <math>H^s</math> data when <math>s > 1</math> [[MacNaOz-p2]]. Some results on the [[nonrelativistic limit]] of this equation are also obtained in that paper.
* In <math>R^3</math>, GWP is known for small <math>H^s</math> data when <math>s > 1</math> [[MacNaOz-p2]]. Some results on the [[nonrelativistic limit]] of this equation are also obtained in that paper.


[[Category:Wave]]
[[Category:wave]]
[[Category:Equations]]
[[Category:Equations]]

Revision as of 22:11, 3 September 2007

This article describes several equations named after Paul Dirac.

The Maxwell-Dirac equation

[More info on this equation would be greatly appreciated. - Ed.]

This equation essentially reads

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D_A y = - y }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Box A + \nabla (\nabla_{x,t} A)= \underline{y} y }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y} is a spinor field (solving a coupled massive Dirac equation), and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D} is the Dirac operator with connection A. We put Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y} in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H^{s_1}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A} in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H^{s_2} \times H^{s_2 - 1}} .

  • Scaling is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (s_1, s_2) = (n/2-3/2, n/2-1)} .
  • When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n=1} , there is GWP for small smooth data Chd1973
  • When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n=3} there is LWP for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (s_1, s_2) = (1, 1)} in the Coulomb gauge Bou1999, and for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (s_1, s_2) = (1/2+, 1+)} in the Lorentz gauge Bou1996
    • For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (s_1, s_2) = (1,2)} in the Coulomb gauge this is in Bou1996
    • This has recently been improved by Selberg to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (1/4+, 1)} . Note that for technical reasons, lower-regularity results do not automatically imply higher ones when the regularity of one field (e.g. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A} ) is kept fixed.
    • LWP for smooth data was obtained in Grs1966
    • GWP for small smooth data was obtained in Ge1991
  • When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n=4} , GWP for small smooth data is known (Psarelli?)

In the nonrelativistic limit this equation converges to a Maxwell-Poisson system for data in the energy space BecMauSb-p2; furthermore one has a local well-posedness result which grows logarithmically in the asymptotic parameter. Earlier work appears in MasNa2003.

Dirac-Klein-Gordon equation

[More info on this equation would be greatly appreciated. - Ed.]

This equation essentially reads

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D \psi = \phi \psi - \psi }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Box \phi = \overline{\psi} \psi }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \psi} is a spinor field (solving a coupled massive Dirac equation), Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D} is the Dirac operator and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \phi} is a scalar (real) field. We put Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \psi} in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H^{s_1}} and in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H^{s_2} \times H^{s_2 - 1}} .

The energy class is essentially Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (s_1,s_2) = (1/2,1)} , but the energy density is not positive. However, the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2} norm of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y} is also positive and conserved..

  • Scaling is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (s_1, s_2) = (d/2-3/2, d/2-1)} .
  • When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n=1} there is GWP for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (s_1,s_2) = (1,1)} Chd1973, Bou2000 and LWP for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (s_1, s_2) = (0, 1/2)} Bou2000.
  • When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n=2} there are some LWP results in Bou2001

Nonlinear Dirac equation

This equation essentially reads

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D \psi - m \psi = \lambda (\gamma \psi, \psi) \psi}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \psi} is a spinor field, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m > 0} is the mass, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lambda} is a complex parameter, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \gamma} is the zeroth Pauli matrix, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (,)} is the spinor inner product.

  • Scaling is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s_c =1} (at least in the massless case Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m=0} ).
  • In Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R^3} , LWP is known for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H^s} when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s > 1} EscVe1997
    • This can be improved to LWP in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H^1} (and GWP for small Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H^1} data) if an epsilon of additional regularity as assumed in the radial variable MacNkrNaOz-p; in particular one has GWP for radial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H^1} data.
  • In Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R^3} , GWP is known for small Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H^s} data when MacNaOz-p2. Some results on the nonrelativistic limit of this equation are also obtained in that paper.